brief illustration for-Post 5a-Linear approximation method

5A-Practice problems with linear approximation

Spread the love

Practice problems with linear approximation.

Brief content of the video.

One solved problem is introduced for the use of linear approximation. This video has a closed caption in English.

This is the first practice problem #3, it is required to find the approximate value of the third root of 8.

In Practice problem #3, it is required to get the approximate value of the third root of 8, also the third root of 8.20, and finally the third root of 25.00. Here are the steps:

Part 1 of Practice problem #3-Practice problems with linear approximation.


1-Our starting point is chosen to be a0=8.00, in the first case b0= 8.00.
2- The function value at x=8 will equal 2.00.
3-The differentiation of f(x)will be=1/3*(x^(1/3)-1)=1/3*x^(-2/3), the slope value at x=8, will be=(1/3)*(8)^(-2/3)=1/12.

4-Use the linear approximation expression and get L(x=8) =f(8)+(y’*(xb-xa), a is the starting point where x=8.00 and ending point=8.00, the term relates to the slope will be=0.
5- the linear approximation L(x=8)=2.00+(1/12)*(8.00-8.0))=2.00. 6-The exact value is the approximated value + error, the exact value is equal to 2.00, and the approximated value=2.00.

Practice problems with linear approximationion.

7- The error value=2-2=0.00. Refer to the previous slide image for more details.

Part 2 of Practice problem #3-Practice problems with linear approximation.

Solved example #3, it is required to get the approximate value of the third root of 8.20.
1-Our starting point is chosen to be a0=8.00, in the first case b0= 8.20.
2- The function value at x=8=2.00, this f(x=a).
3-The differentiation of f(x)will be=1/3*(x^(1/3)-1)=1/3*x^(-2/3), the slope value at x=8, will be=(1/3)*(8)^(-2/3)=(1/12).

4-Use the linear approximation expression and get L(x=8) =f(8)+(y’*(xb-xa), a is the starting point where x=8.00 and ending point=8.20.

5-L(x=8.20)=2.00+(1/12)*(8.20-8.0))=2.0166.ated value=2.00.
6-The exact value equal to the approximated value + error, the exact value is 2.01652, the approximated value=2.0166.

Part 3 of Practice problem #3-Practice problems with linear approximation.

In Part 3 of Practice problem#3, is required to get the approximate value of the third root of 25.0.
1-Our starting point is chosen to be a0=8, in this third case the value of b0= 25.
2- The function value at x=8=2.00, this f(x=a).
3-The differentiation of f(x)will be=1/3*(x^(1/3)-1)=1/3*x^(-2/3), the slope value at x=8, will be=(1/3)*(8)^(-2/3)=(1/12).

4-Use the linear approximation expression and get L(x=25.0) =f(8)+(y’*(xb-xa), a is the starting point where x=8.00 and ending point=25.

5- The linear approximated value at 8.2, will be written as L(x=8.20)=2.00+(1/12)*(25.0-8.0))=3.4166.
6-The exact value is the approximated value + error, the exact value is 2.92424, and the approximated value is 3.41666.
7- The error value=(2.92424-3.4166)=-0.49266.

Part 2 of the practice problem for linear approximation.



Practice problem #4Practice problems with linear approximation.

Practice problem #4, for linear approximation for the f(x)= cos(x) at initial point pi/4, it is required to estimate the linear approximation at x=pi/3. The solution can be done through the following steps:


1- We need to estimate the function value at the starting point a, which is= cos(Pi/4)=0.707.
2- Get the slope at x=pi/4 of the function, f'(cos(x))=-sin(x),when x=Pi/4.

3- Get the value of y’ at x=Pi/4, which is the starting point, it will be f'(x= Pi/4)=-0.707.
4-Use the linear approximation expression and get L(x=Pi/3) =f(Pi/4)+(y’*(xb-xa), a is the starting point where x=(Pi/4), while xb is the point for which we want to estimate the Y value which is =Pi/3.

5-L(x=Pi/3)=0.707+((-0.707)*(Pi/3-Pi/4))=0.5218.
6-The exact value= the approximated value + error, the exact value is cos(Pi/3)=0.50, the approximated value=0.5218.

7- The error value=0.50-0.5218=-0.0218.
8- For the error % divide by 100, then error%=0.0218%.

Practice problem # 4 for linear approximation

This is the pdf file used in the illustration of this post.
The next post is about the Newton-Raphson method. The method is another method for root finding.

Scroll to Top