

Solved problem 3-1-SEGUI- Find the LRFD and ASD design strength and allowable strength for a given plate $5 \times 1/2$ inches of A36 steel with two lines of bolts

As a result of the preceding information, the AISC Specification (D2) states that the nominal strength of a tension member, P_n , is to be the smaller of the values obtained by substituting into the following two expressions:

For the limit state of yielding in the gross section (which is intended to prevent excessive elongation of the member),

$$P_n = F_y A_g \quad \text{Limit state of yielding (AISC Equation D2-1)}$$

$\phi_t P_n = \phi_t F_y A_g$ = design tensile strength by LRFD ($\phi_t = 0.9$)

$$\frac{P_n}{\Omega_t} = \frac{F_y A_g}{\Omega_t} = \text{allowable tensile strength for ASD} \quad (\Omega_t = 1.67)$$

For tensile rupture in the net section, as where bolt or rivet holes are present,

$$P_n = F_u A_e \quad \text{Limit state of Rupture (AISC Equation D2-2)}$$

$\phi_t P_n = \phi_t F_u A_e$ = design tensile rupture strength for LRFD ($\phi_t = 0.75$)

$$\frac{P_n}{\Omega_t} = \frac{F_u A_e}{\Omega_t} \quad \text{allowable tensile rupture strength for ASD} \quad (\Omega_t = 2.00)$$

Grade	Yield Point	Tensile Point
A36	36 ksi	58-80 ksi
A572	42-65 ksi*	0.5-0.7%
A514	100 ksi	110-130 ksi

CM#15

A36 \rightarrow up to 8" and over From 0.75" \rightarrow 8" Check availability

2-50

Table 2-5
Applicable ASTM Specifications
for Plates and Bars

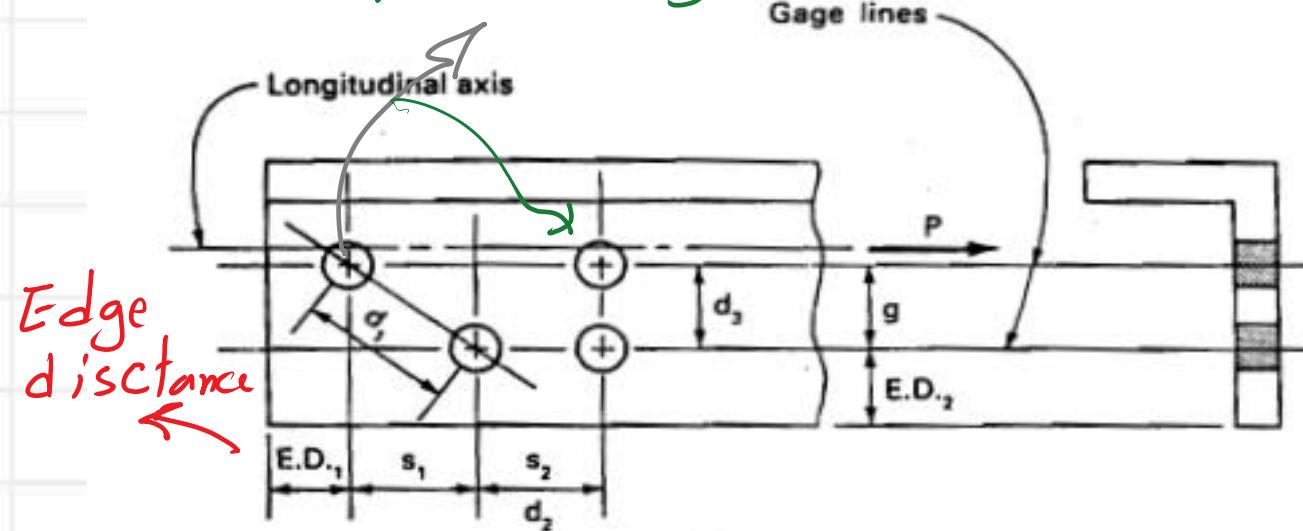
Steel Type	ASTM Designation	F_y Yield Stress ^a (ksi)	F_u Tensile Stress ^a (ksi)	Plates and Bars, in.									
				to 0.75 incl.	over 0.75 to 1.25 incl.	over 1.25 to 1.5 incl.	over 1.5 to 2 incl.	over 2 to 2.5 incl.	over 2.5 to 4 incl.	over 4 to 5 incl.	over 5 to 6 incl.	over 6 to 8 incl.	over 8
Carbon	A36	32	58-80										
		36	58-80										
	A283 ^e	Gr. C	30	55-75					d				
		Gr. D	33	60-80					d				
	A529	Gr. 50	50	65-100		b	b	b	b				
		Gr. 55	55	70-100		c	c	c	c				
	A709	Gr. 36	36	58-80									

^a Minimum, unless a range is shown.

^b Applicable for plates to 1 in. thickness and bars to 3½ in. thickness.

^c Applicable for plates to 1 in. thickness and bars to 3 in. thickness.

^d Thickness is not limited to 2 in. in ASTM A283 and thicker plates may be obtained but availability should be confirmed.


^e This specification is not a prequalified base metal per AWS D1.1/D1.1M:2015.

^f Applicable for plates to 3 in. thickness.

^g Applicable for plates to 1 in. thickness.

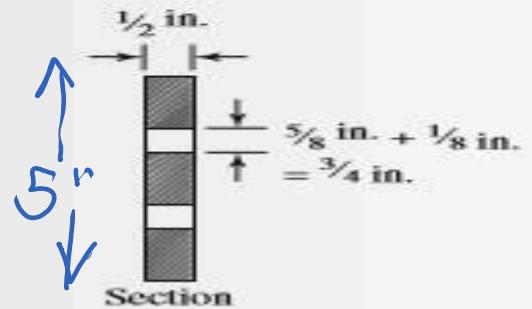
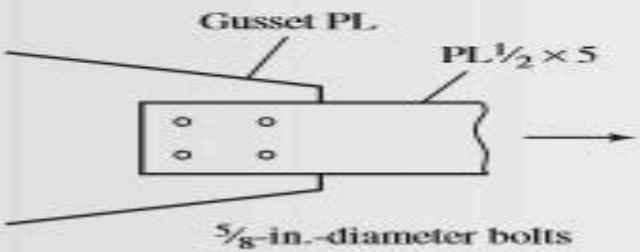
New item
Two Grades added

Fasteners

S in the direction of Loading
g per to the Loading
direction

Gauge Line - 1
 Gauge Line - 2

E.D. = edge distance
 g = gage
 s = pitch
 d = distance between bolts



Figure 2-3 shows a tension member composed of a single steel angle with a 4-bolt connection. The tensile load P is assumed to be applied parallel to and coincident with the longitudinal axis of the member. The bolt holes are located on *gage lines* that are also parallel to the longitudinal axis. The dimension g between the gage lines is called the *gage*. The dimension s parallel to the gage line and taken between centers of bolt holes is called the *pitch* (or the *bolt spacing*). The *distance between bolts* is a straight line distance between any two bolts. The *edge distance* is the perpendicular distance from the *center of a hole* to the nearest edge.

EXAMPLE 3.1

A $1\frac{1}{2} \times 5$ plate of A36 steel is used as a tension member. It is connected to a gusset plate with four $\frac{5}{8}$ -inch-diameter bolts as shown in Figure 3.3. Assume that the effective net area A_e equals the actual net area A_n (we cover computation of effective net area in Section 3.3).

- What is the design strength for LRFD?
- What is the allowable strength for ASD?

FIGURE 3.3

Limit State of Yielding

Solution

$$A_g = 5 \left(\frac{1}{2} \right) = 2.50 \text{ in}^2$$

$$A_{net} = 2.50 - 2 \left(\frac{6}{8} \right) \left(\frac{1}{2} \right) = 2.5 - \frac{6}{8} = 1.75 \text{ in}^2$$

LRFD: $P_n = A_g F_y$

$$P_n = 2.50(36) = 90 \text{ kips}$$

$$\phi = \frac{5}{8} + \frac{1}{8} = \frac{6}{8}$$

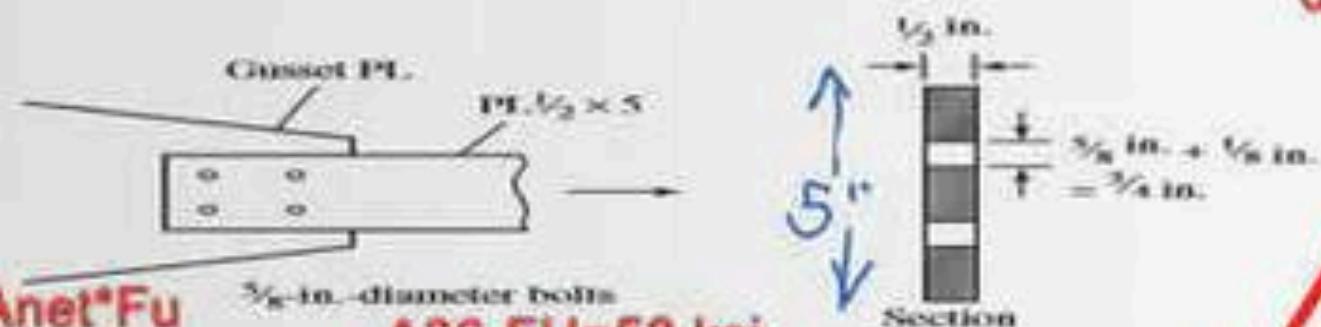
$$N_0 = 2$$

$$F_y = 36 \text{ kips}$$

$$F_u = 58 \text{ kips}$$

$$= 1.75 \text{ in}^2$$

$$\phi F_y P_n = 0.90(90) = 81 \text{ kips}$$


Prepared by Eng.Maged Kamel.

EXAMPLE 3.1

$\Delta \frac{1}{2} \times 5$ plate of A36 steel is used as a tension member. It is connected to a gusset plate with four $\frac{3}{8}$ -inch-diameter bolts as shown in Figure 3.3. Assume that the effective net area A_n equals the actual net area A_n (we cover computation of effective net area in Section 3.3).

- What is the design strength for LRFD?
- What is the allowable strength for ASD?

FIGURE 3.3

Tensile rupture = $A_{net} \cdot F_u$

$$A36-F_u = 58 \text{ ksi}$$

Solution: $A_g = 5 \left(\frac{1}{2}\right) = 2.50 \text{ in}^2$

$$A_{net} = 2.50 - 2 \left(\frac{6}{8}\right) \left(\frac{1}{2}\right) = 2.5 - \frac{6}{8}$$

LRFD: $P = A_{net} F_u = 1.75(58) = 1.75 \frac{5}{8} \text{ in}^2$

$$\phi P_n = 0.75(1.75)(58) = 76.1 \text{ kips}$$

$$dh = db + 1/8"$$

$$dh = 5/8 + 1/8 = 6/8 \text{ inches}$$

F_y

$$A_{36} \{36 \text{ ksi}\}$$

$$F_u = 58$$

$$\phi = \frac{5}{8} + \frac{1}{8} = \frac{6}{8} \text{ ksi}$$

$$n = 2$$

$$\phi = 0.75$$

tensile rupture

$$\phi P_n \cdot \min(90, 76.1) \Rightarrow 76.1 \text{ kips} \quad \text{Final LRFD tensile strength}$$

ADS limit state of yielding

$$R = \frac{1.50}{0.90} = 1.67$$

$$\frac{P_n}{R_y} : \frac{1}{1.67} (2.50)(36) = 54 \text{ kips}$$

limit state of Tension Fracture.

$$R = \frac{1.50}{(\frac{3}{4})} = 2, \quad A_{net} = 1.75 \text{ inch}^2$$

$$\frac{P_n}{R_F} : \frac{1.75(58)}{2} = 50.8 \text{ kips}$$

$$\text{Select } \frac{P_n}{R_F} = 50.8 \text{ kips}$$

Final ASD allowable strength.