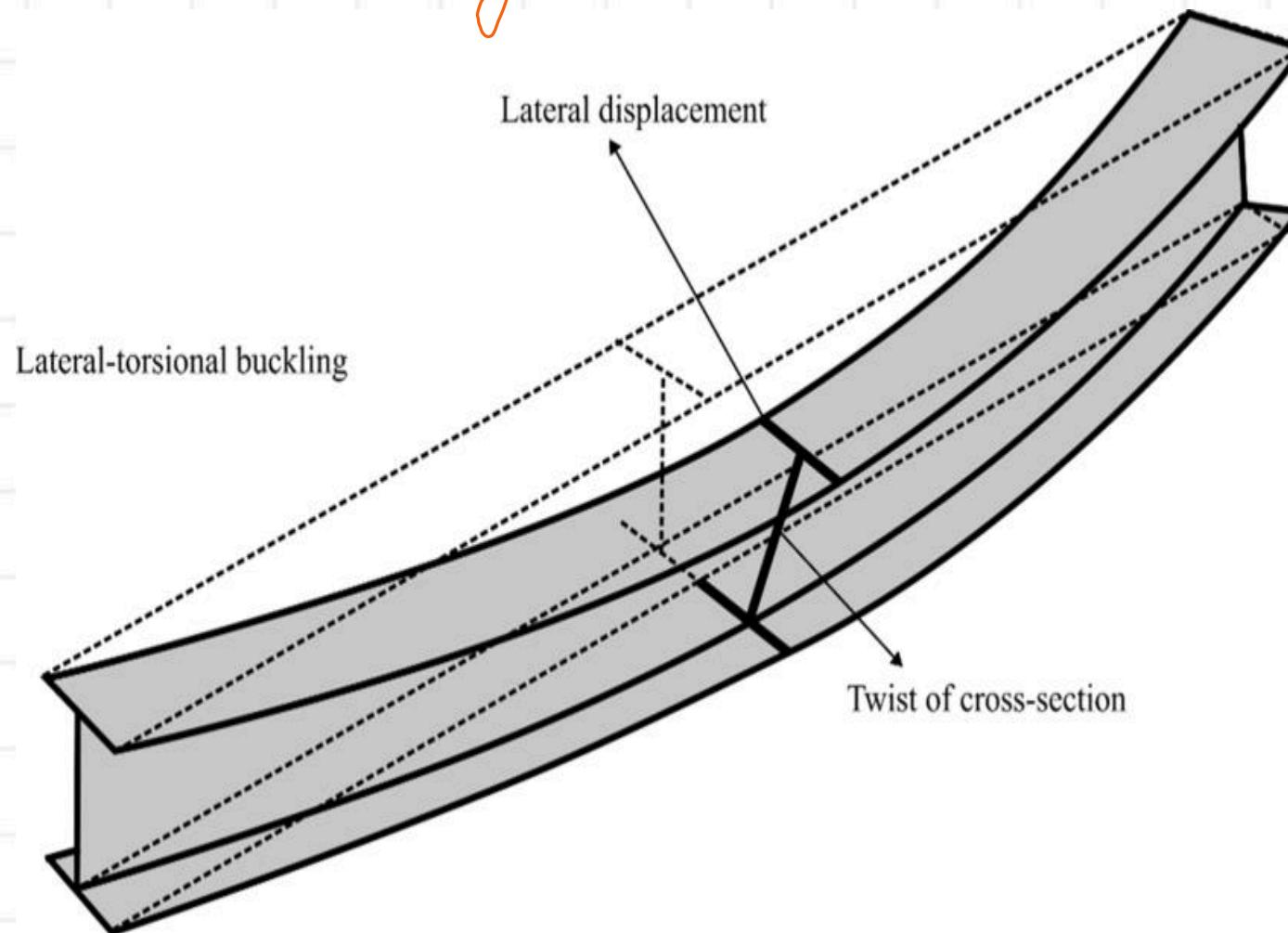

Topics

① Lateral-Torsional Buckling of Beams

② Design and analysis For beams, How do we Find
Lp ?
Lr ?

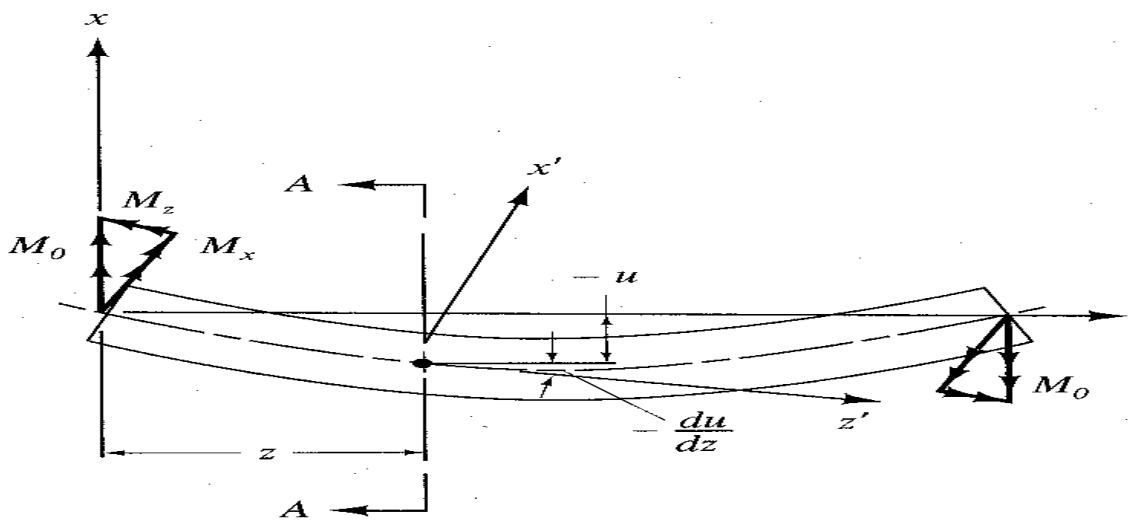
③ Solved problems.

Consider the compression zone of the laterally unsupported beam of Fig. 9.1.1. With the loading in the plane of the web, according to ordinary beam theory, points *A* and *B* are equally stressed. Imperfections in the beam and accidental eccentricity in loading actually result in different stresses at *A* and *B*. Furthermore, residual stresses as discussed in Chapter 6 contribute to unequal stresses across the flange width at any distance from the neutral axis.

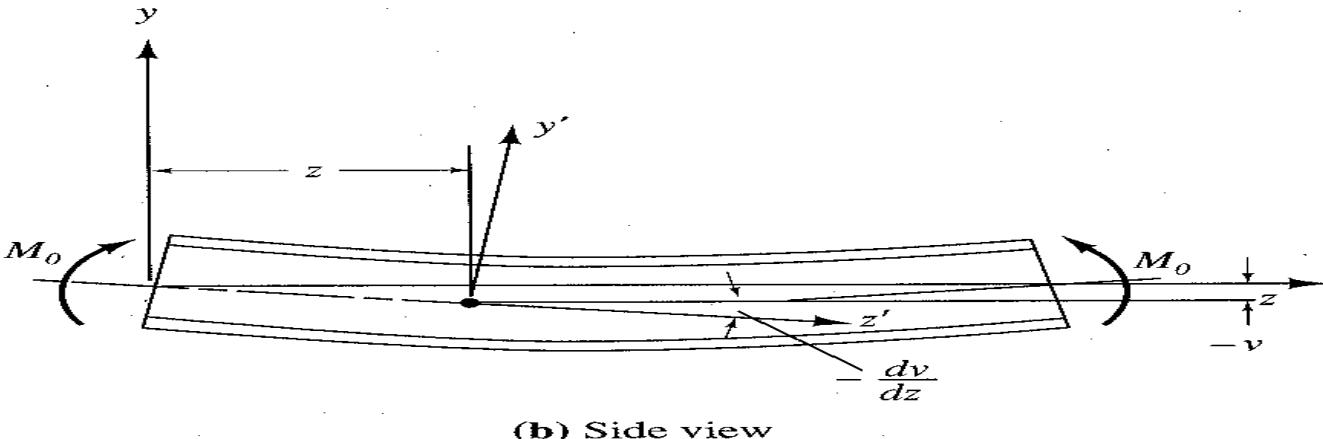

Lateral-Torsional Buckling of Beams

Definition from Schaum Book: Structural steel design

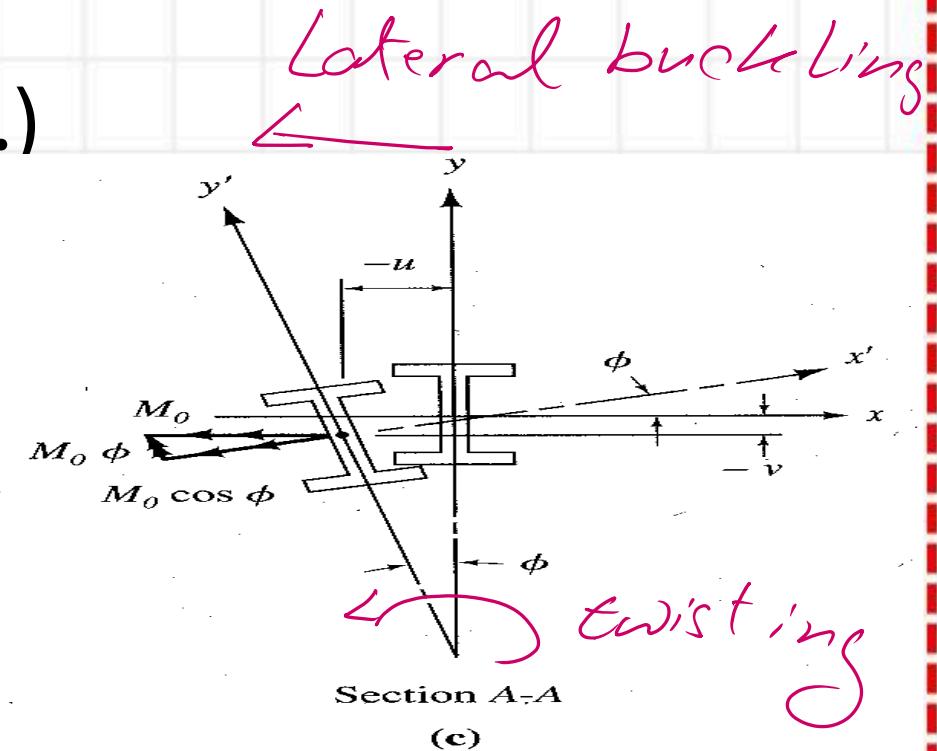
As the name implies, lateral-torsional buckling is an overall instability condition of a beam involving the simultaneous twisting of the member and lateral buckling of the compression flange.


To prevent lateral-torsional buckling, a beam must be braced at certain intervals against either twisting of the cross section or lateral displacement of the compression flange. Unlike column bracing (which requires another structural member framing into the column), beam bracing to prevent lateral-torsional buckling can be minimal. Even the intermittent welding of a metal (floor or roof) deck to the beam may be sufficient bracing for this purpose.

From Research gate

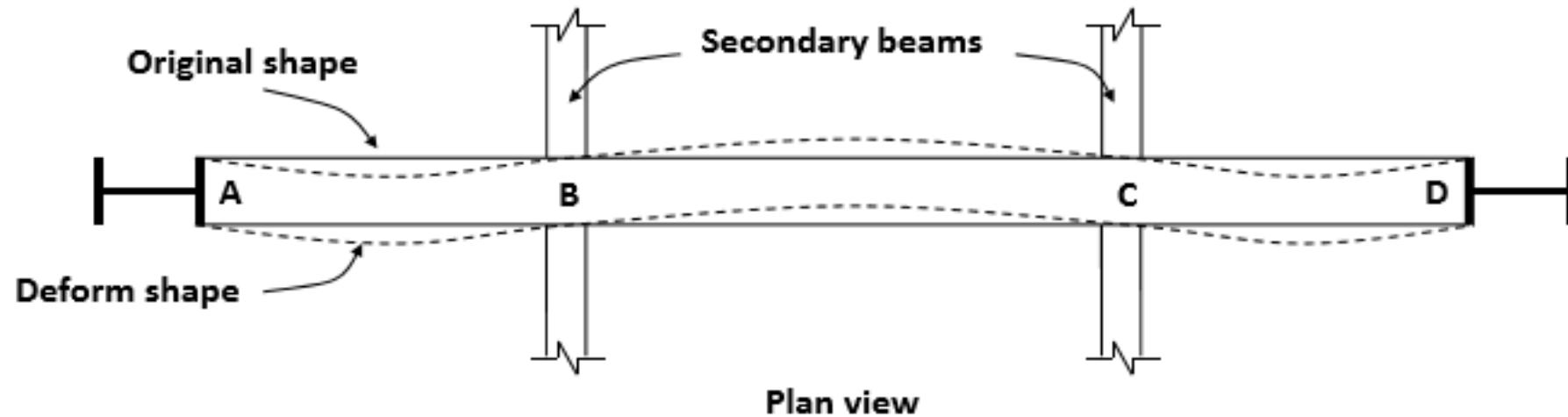
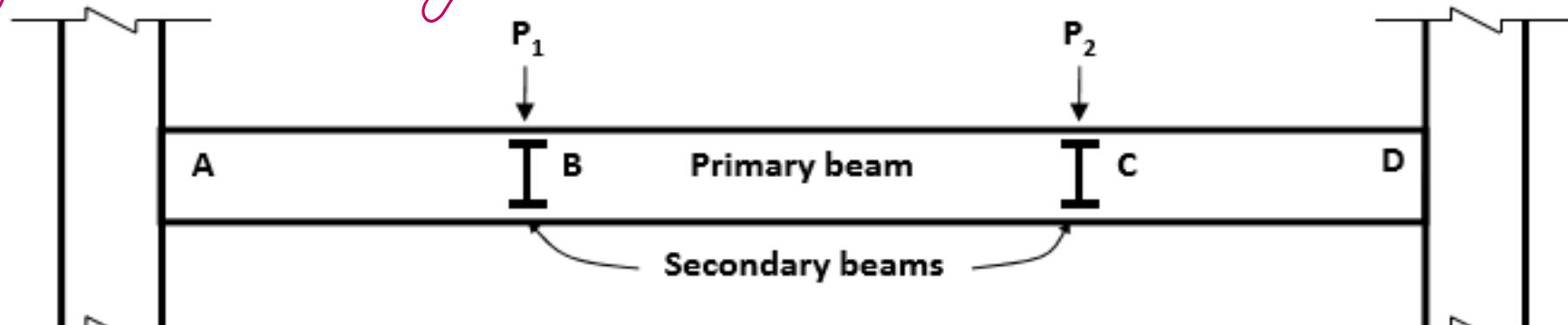


Lateral Torsional Buckling (cont.)


I-Beam
in a
Buckled
Position

(a) Top view

(b) Side view



Section A-A

(c)

Direction Cosines

	x	y	z
x'	1	ϕ	$-\frac{du}{dz}$
y'	$-\phi$	1	$-\frac{dv}{dz}$
z'	$\frac{du}{dz}$	$\frac{dv}{dz}$	1

Effect of secondary beams

Points A, B, C and D are restrained from deform laterally by the secondary beams and the connection at column

Restrained Points

Prepared by Eng. Maged Kamel.

M_n

L_r = unbraced length which is the boundary between elastic and inelastic lateral-torsional buckling, it

(F2-1)

 M_p

(F2-2)

 M_r

(F2-3)

plastic
hinging

inelastic buckling

elastic
buckling

 L_p L_r L_D

1. Yielding

$$M_n = M_p = F_y Z_x \quad (\text{F2-1})$$

where

F_y = specified minimum yield stress of the type of steel being used, ksi (MPa)

Z_x = plastic section modulus about the x -axis, in.³ (mm³)

2. Lateral-Torsional Buckling

- (a) When $L_b \leq L_p$, the limit state of lateral-torsional buckling does not apply.
- (b) When $L_p < L_b \leq L_r$

$$M_n = C_b \left[M_p - (M_p - 0.7 F_y S_x) \left(\frac{L_b - L_p}{L_r - L_p} \right) \right] \leq M_p \quad (\text{F2-2})$$

- (c) When $L_b > L_r$

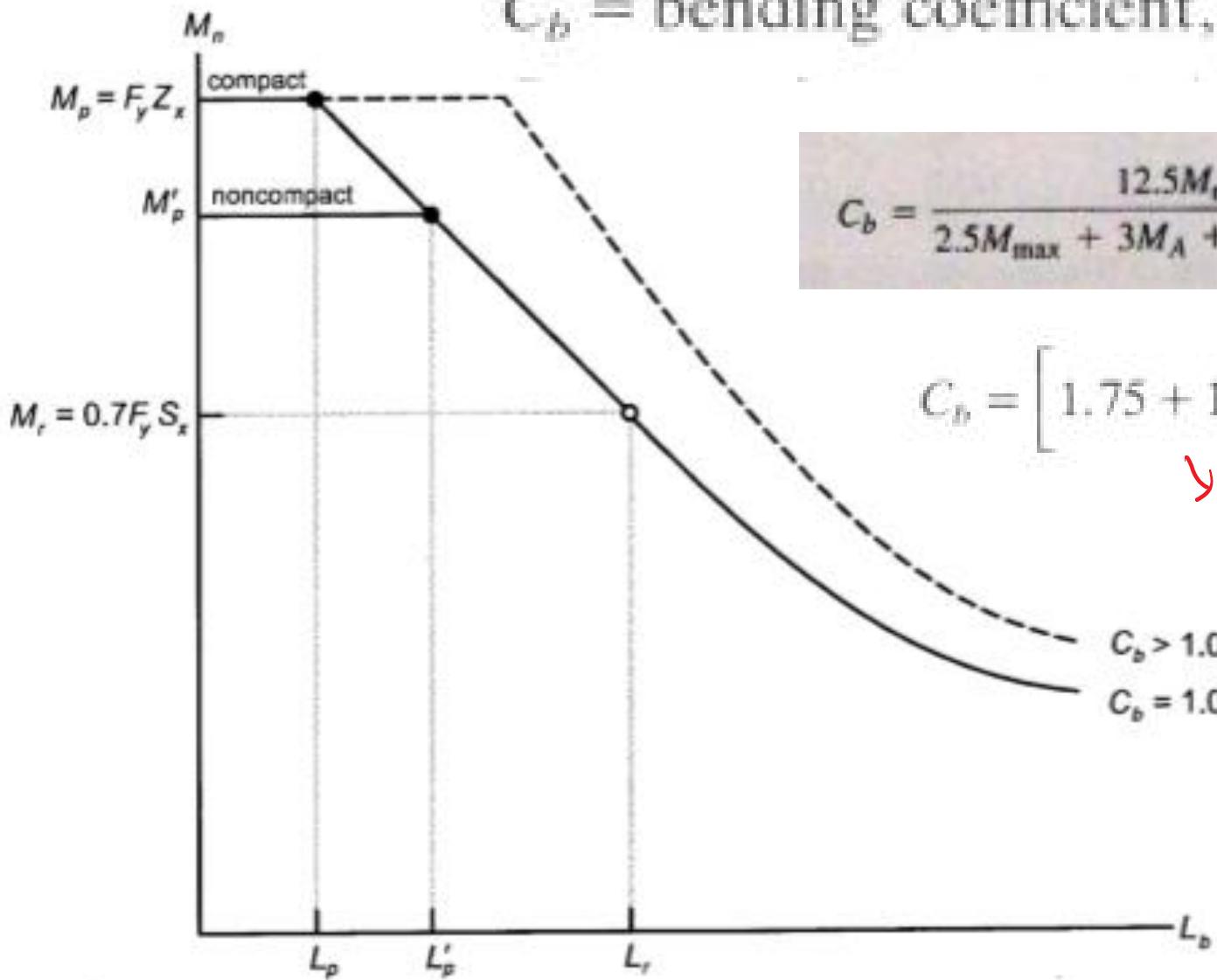
$$M_n = F_{cr} S_x \leq M_p \quad (\text{F2-3})$$

where

L_b = length between points that are either braced against lateral displacement of the compression flange or braced against twist of the cross section, in. (mm)

$$F_{cr} = \frac{C_b \pi^2 E}{\left(\frac{L_b}{r_{cr}} \right)^2} \sqrt{1 + 0.078 \frac{J_c}{S_x h_o} \left(\frac{L_b}{r_{cr}} \right)^2} \quad (\text{F2-4})$$

and where


E = modulus of elasticity of steel = 29,000 ksi (200 000 MPa)

J_c = torsional constant, in.⁴ (mm⁴)

S_x = elastic section modulus taken about the x -axis, in.³ (mm³)

h_o = distance between the flange centroids, in. (mm)

C_b = bending coefficient, defined in Eq. [5.10]

$$C_b = \frac{12.5M_{\max}}{2.5M_{\max} + 3M_A + 4M_B + 3M_C} R_m \leq 3.0$$

new

$$C_b = \left[1.75 + 1.05 \frac{M_1}{M_2} + 0.3 \left(\frac{M_1}{M_2} \right)^2 \right] \leq 2.3$$

Yold

Ch Equatio

$$M_n = f_y Z_x \quad C_b = 1$$

$$L_p = 1.76 r_y \sqrt{\frac{E}{F_y}}$$

(Spec. Eq. F2-5)

For F_y

$$F_y = 45 \text{ ksi}$$

$$F_y = 50 \text{ ksi}$$

$$F_y = 65 \text{ ksi}$$

For $F_y = 45 \text{ ksi}$: $L_p = 44.68 \text{ ry}$

For $F_y = 50 \text{ ksi}$: $L_p = 42.386 \text{ ry}$

For $F_y = 65 \text{ ksi}$: $L_p = 37.175 \text{ ry}$

$$L_p = 1.76 r_y \sqrt{\frac{E}{F_y}}$$

unbraced length

$$\text{For } F_y = 36 \text{ ksi: } \Rightarrow L_p = 49.953 \text{ ry}$$

$$\text{For } F_y = 42 \text{ ksi: } \Rightarrow L_p = 46.247 \text{ ry}$$

Example
For $W12 \times 30$

A992 steel where
 $F_y = 50 \text{ ksi}$ & $F_u = 65 \text{ ksi}$

Find L_p

and L_r

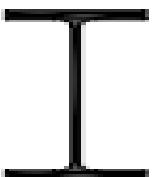
$A992 \Rightarrow F_y = 50 \text{ ksi}$

$L_p = 42.386 \text{ in}$

Use this
relation

For L_p

Table 2-4
Applicable ASTM Specifications
for Various Structural Shapes


Steel Type	ASTM Designation	F_y Yield Stress ^a (ksi)	F_u Tensile Stress ^a (ksi)	Applicable Shape Series							HSS		
				W	M	S	HP	C	MC	L	Rect.	Round	Pipe
High-Strength Low-Alloy	A618 ^f	Gr. III	50	65									
		50	50	65									
	A709	50S	50-65	65									
		50W	50	70									
	A913	50	50 ^h	65 ^h									
		60	60	75									
		65	65	80									
		70	70	90									
	A992		50 ⁱ	65 ⁱ									
	A1065 ^k	Gr. 50 ^j	50	60									

^a = Preferred material specification.
^b = Other applicable material specification, the availability of which should be confirmed prior to specification.
^c = Material specification does not apply.

Footnotes on facing page.

W12 x 30 Second Part of Table 1-1

Table 1-1 (continued)
W-Shapes
Properties

W14-W12

Nominal Wt. lb/ft	Compact Section Criteria		Axis X-X				Axis Y-Y				r_{ts} in.	h_o in.	Torsional Properties	
	b_t 24	$\frac{b}{t_w}$	t in. ⁴	S in. ³	r in.	Z in. ³	t in. ⁴	S in. ³	r in.	Z in. ³			J in. ⁴	C_w in. ⁹
35	6.31	36.2	285	45.6	5.25	512	24.5	7.47	1.54	11.5	1.79	12.0	0.741	879
30	7.41	41.8	238	38.6	5.21	43.1	20.3	6.24	1.52	9.56	1.77	11.9	0.457	720
26	8.54	47.2	204	33.4	5.17	37.2	17.3	5.34	1.51	8.17	1.75	11.8	0.300	607

$$J = 1.52$$

$$I_p = 42386 (1.52) = 64.427 \Rightarrow 1/2 \Rightarrow 5.37'$$

$$J = 0.457, C = 1, r_{ts} = 1.77, h_o = 11.90$$

W12 X 30

L_r , the limiting unbraced length for the limit state of inelastic lateral-torsional buckling, in. (mm), is:

$$L_r = 1.95 r_y \frac{E}{0.7 F_y} \sqrt{\frac{J_c}{S_x h_0} + \sqrt{\left(\frac{J_c}{S_x h_0}\right)^2 + 6.76 \left(\frac{0.7 F_y}{E}\right)^2}} \quad (\text{F2-6})$$

where:

r_y = radius of gyration about y-axis, in. (mm)

$$r_y^2 = \frac{\sqrt{I_y C_w}}{S_x}$$

(F2-7)

and the coefficient c is determined as follows:

(1) For doubly symmetric I-shapes

$$c = 1$$

(F2-8a)

r_y	1.52
r_{ts}	1.77
Z_x	43.1
S_x	38.6
C_w	720
c	1
J	0.457
H_0	11.9
L_p	5.37
l_r	15.7

	1.95* r_{ts}	$E/0.70F_y$	main SQrt	$(J^*c/s_x^*h_0)$	Sqrt	$(J^*c/s_x^*h_0)^2 6.67*(0.7F_y/E)^2$
	3.4515	828.5714	0.06547352	0.000994906	0.0032919	9.89837E-07

$$L_r = 3.4515 \sqrt{828.5714} \sqrt{0.06547352} + \sqrt{0.000994906} \sqrt{9.89837E-07}$$

$$L_r = 187.242^{\prime \prime} / 12 \Rightarrow 15.604 \text{ FT}$$

$\approx 15.6 \text{ FT}$

Z_x

W12 x 30

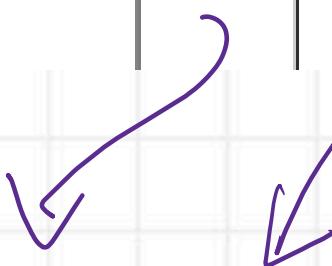
Confirm your answer From Table 3-2

Table 3-2 (continued)

W-Shapes

$F_y = 50 \text{ ksi}$

Selection by Z_x


$F_y = 50 \text{ ksi}$

Shape	Z _x	M _{px} /Ω _b	Φ _b M _{px}	M _{rx} /Ω _b	Φ _b M _{rx}	BF/Ω _b	Φ _b BF	L _p	L _r	I _x	V _{nx} /Ω _v	Φ _v V _{nx}
		kip·ft	kip·ft	kip·ft	kip·ft	kips	kips				kip·ft	kip·ft
		in. ³	ASD	LRFD	ASD	LRFD	ASD				ASD	LRFD
W16x26 ^v	44.2	110	166	67.1	101	5.93	8.98	3.96	11.2	301	70.5	106
W12x30	43.1	108	162	67.4	101	3.97	5.96	5.37	15.6	238	64.0	95.9

W16x26 ^v	44.2	110	166	67.1	101	5.93	8.98	3.96	11.2	301	70.5	106
W12x30	43.1	108	162	67.4	101	3.97	5.96	5.37	15.6	238	64.0	95.9

$L_p = 5.37'$

$L_r = 15.60'$

