

Quadratic interpolation:

Quadratic interpolation is the process of using a 2nd-order polynomial to make an interpolation for a function.

This process provides an accuracy of the estimate which is better than the linear Interpolation, recall our general form of a polynomial

$$P(x) = a_0 + a_1 \cdot x + a_2 \cdot x^2 + a_3 \cdot x^3 + \dots + a_{n-1} \cdot x^{n-1} + a_n \cdot x^n$$

for the quadratic form , we can rewrite the previous polynomial as

$$P(x) = a_0 + a_1 \cdot x + a_2 \cdot x^2$$

Suppose we have 3 points A(x₀, y₀), B (x₁,y₁), C (x₂, y₂) , and we want to fit a quadratic polynomial through these points. The general form of a quadratic polynomial is P(x) = a₀ + a₁·x + a₂·x². Thus, if we were to evaluate P(x) at these three points, we get three equations

That can be written as follows

$$P(x_0) = y_0 = a_0 + a_1 \cdot x_0 + a_2 \cdot x_0^2 \quad \text{For point A}$$

$$P(x_1) = y_1 = a_0 + a_1 \cdot x_1 + a_2 \cdot x_1^2 \quad \text{For point B}$$

$$P(x_2) = y_2 = a_0 + a_1 \cdot x_2 + a_2 \cdot x_2^2 \quad \text{For point C}$$

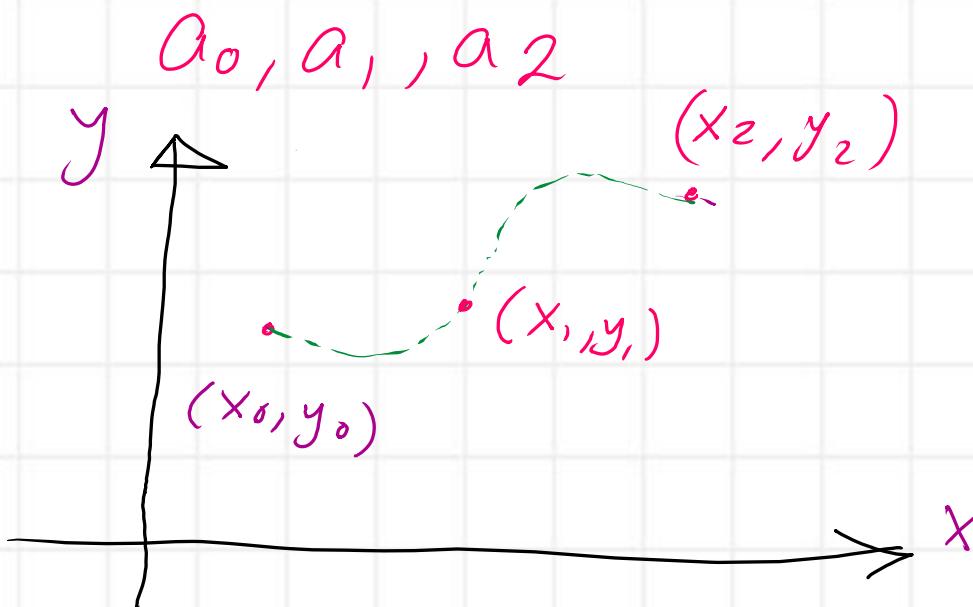
Write these equations in matrix form

$$\begin{bmatrix} 1 & x_0 & x_0^2 \\ 1 & x_1 & x_1^2 \\ 1 & x_2 & x_2^2 \end{bmatrix} \begin{pmatrix} a_0 \\ a_1 \\ a_2 \end{pmatrix} = \begin{pmatrix} y_0 \\ y_1 \\ y_2 \end{pmatrix}$$

This matrix, is called Vandermonde matrix denoted by V

can be written in form of

We need to estimate



$$\begin{bmatrix} V_{1,1} & V_{1,2} & V_{1,3} \\ 1 & x_0 & x_0^2 \\ 1 & x_1 & x_1^2 \\ 1 & x_2 & x_2^2 \end{bmatrix}$$

$V_{i,j}$

i : row
 j : columns

$$V_{1,1} = (x_{1-1})^{j-1} = (x_{(1-1)})^{1-1} = x_0^0 = 1$$

$$V_{1,2} = (x_{1-1})^{2-1} = (x_{1-1})^1 = x_0^1 = x_0$$

$i=1$

$j=2$

$$V_{1,3} = (x_{1-1})^{3-1} = (x_{1-1})^2 = x_0^2 = x_0^2$$

The first
row
items

$$\begin{bmatrix}
 1 & x_0 & x_0^2 \\
 1 & x_1 & x_1^2 \\
 1 & x_2 & x_2^2
 \end{bmatrix}
 \xrightarrow{\substack{\rightarrow v_{2,1} \\ \rightarrow v_{2,2} \\ \rightarrow v_{2,3}}}
 \begin{matrix}
 v_{i,j} \\
 i: \text{row} \\
 j: \text{columns}
 \end{matrix}$$

$$v_{2,1} = (x_{2-1})^{j-1} = (x_{2-1})^{1-1} = x_1^0 = 1$$

$$v_{2,2} = (x_{2-1})^{2-1} = (x_1)^1 = x_1^1 = x_1$$

$$\begin{matrix}
 i= \\
 j=2
 \end{matrix}$$

$$v_{2,3} = (x_{2-1})^{3-1} = (x_1)^2 = x_1^2 = x_1^2$$

The
second
row
items

For the third row of Vandermonde

$$\begin{aligned}
 v_{3,1} &= x_2^0 \\
 v_{3,2} &= x_2^1 \\
 v_{3,3} &= x_2^2
 \end{aligned}$$

To get the *as* value, we can write

$$\begin{pmatrix} a_0 \\ a_1 \\ a_2 \end{pmatrix} = \frac{\text{Adjoin}}{\text{Determinant}*} \begin{pmatrix} y_0 \\ y_1 \\ y_2 \end{pmatrix} \quad \begin{bmatrix} 1 & x_0 & x_0^2 \\ 1 & x_1 & x_1^2 \\ 1 & x_2 & x_2^2 \end{bmatrix} \begin{pmatrix} a_0 \\ a_1 \\ a_2 \end{pmatrix} = \begin{pmatrix} y_0 \\ y_1 \\ y_2 \end{pmatrix}$$

For the determinant, series of operations can be applied, as follows

$$\begin{bmatrix} 1 & x_0 & x_0^2 \\ 1 & x_1 & x_1^2 \\ 1 & x_2 & x_2^2 \end{bmatrix} \begin{pmatrix} a_0 \\ a_1 \\ a_2 \end{pmatrix} = \begin{pmatrix} y_0 \\ y_1 \\ y_2 \end{pmatrix}$$

To make $x_0 = 0$

A- multiply the 2nd column by x_0

B-Subtract 2nd column from the 3rd column.

↓

$$\begin{bmatrix} 1 & x_0 & x_0^2 \\ 1 & x_1 & x_1^2 \\ 1 & x_2 & x_2^2 \end{bmatrix} \xrightarrow{\substack{x_0 \\ x_1 \\ x_2}} \begin{bmatrix} 1 & x_0 & x_0^2 - x_0 \\ 1 & x_1 & x_1^2 - x_0 x_1 \\ 1 & x_2 & x_2^2 - x_0 x_2 \end{bmatrix} \xrightarrow{\substack{x_0 \\ x_1 \\ x_2}} \begin{bmatrix} 1 & x_0 & 0 \\ 1 & x_1 & x_1^2 - x_0 x_1 \\ 1 & x_2 & x_2^2 - x_0 x_2 \end{bmatrix}$$

C- Multiply the 1st column by x_0

D- Subtract 1st column from the 2nd column.

$$\begin{bmatrix} 1 & x_0 - x_0 & 0 \\ 1 & x_1 - x_0 & (x_1)(x_1 - x_0) \\ 1 & x_2 - x_0 & x_2(x_2 - x_0) \end{bmatrix} \xrightarrow{\substack{R_2 - R_1 \\ R_3 - R_1}} \begin{bmatrix} 1 & 0 & 0 \\ 1 & x_1 - x_0 & (x_1 - x_0) \\ 1 & x_2 - x_0 & x_2(x_2 - x_0) \end{bmatrix}$$

to be = 0

$$\xrightarrow{\substack{R_2 \\ R_3}} \begin{bmatrix} 1 & 0 & 0 \\ 0 & x_1 - x_0 & x_1(x_1 - x_0) \\ 0 & x_2 - x_0 & x_2(x_2 - x_0) \end{bmatrix}$$

$$\begin{pmatrix} 1 & \overset{\circ}{x_1} & \overset{\circ}{x_1(x_1 - x_0)} \\ 0 & (x_1 - x_0) & x_2(x_2 - x_0) \\ 0 & (x_2 - x_0) & x_2(x_2 - x_0) \end{pmatrix}$$

The determinant

$$\begin{aligned}
 & +1 (x_1 - x_0)(x_2 - x_0) x_2 - (x_1)(x_1 - x_0)(x_2 - x_0) \\
 & = (x_2 - x_0) \left(x_1 x_2 - x_0 x_2 - x_1^2 + x_1 x_0 \right) \\
 D & = (x_2 - x_0) \left(\begin{matrix} x_1 & -x_0 \\ x_2 & -x_1 \end{matrix} \right) \left(\begin{matrix} x_1 & x_2 \\ x_2 & x_1 \end{matrix} \right)
 \end{aligned}$$

Adjoin matrix of Vandermonde:

Steps

A- Estimate the matrix of minors.

B-Turn the matrix of minors into cofactors.

3-Adjugate.

$$V = \begin{bmatrix} 1 & x_0 & {x_0}^2 \\ 1 & x_1 & {x_1}^2 \\ 1 & x_2 & {x_2}^2 \end{bmatrix}$$

$$\begin{aligned} M_{11} &= (x_1 x_2^2) - (x_2)(x_1^2) \rightarrow C_{11} = +M_{11} \\ M_{12} &= x_2^2 - x_1^2 = (x_2 - x_1)(x_2 + x_1) \rightarrow C_{12} = -M_{12} \\ M_{13} &= x_2 - x_1 = (x_2 - x_1) \rightarrow C_{13} = +M_{13} \end{aligned}$$

Adjoin matrix of Vandermonde:

Steps

A- Estimate the matrix of minors.

*B-Turn the matrix of minors to
cofactors.*

3-Adjugate.

$$V = \begin{bmatrix} 1 & x_0 & {x_0}^2 \\ 1 & x_1 & {x_1}^2 \\ 1 & x_2 & {x_2}^2 \end{bmatrix}$$

$$\begin{aligned} M_{21} &= x_0 x_2^2 - x_2 x_0^2 \rightarrow C_{21} = -M_{21} \\ M_{22} &= x_2^2 - x_0^2 = (x_2 - x_0)(x_2 + x_0) \rightarrow C_{22} = +M_{22} \\ M_{23} &= (x_2 - x_0) \rightarrow C_{23} = -M_{23} \end{aligned}$$

Adjoin matrix of Vandermonde:

Steps

A- Estimate the matrix of minors.

B-Turn the matrix of minors into cofactors.

3-Adjugate.

$$V = \begin{bmatrix} 1 & x_0 & x_0^2 \\ 1 & x_1 & x_1^2 \\ 1 & x_2 & x_2^2 \end{bmatrix}$$

$$M_{31} = x_0 x_1^2 - x_2 (x_0)^2 \rightarrow C_{31} = M_{31}$$

$$M_{32} = x_1^2 - x_0^2 = (x_1 - x_0)(x_1 + x_0) \rightarrow C_{32} = -M_{32}$$

$$M_{33} = (x_1 - x_0) \rightarrow C_{33} = +M_{33}$$

$$\begin{pmatrix} x_1 * x_2^2 - x_1^2 * x_2 & -(1 * x_2^2 - 1 * x_1^2) & 1 * x_2 - 1 * x_1 \\ -(x_0 * x_2^2 - x_0^2 * x_2) & 1 * x_2^2 - 1 * x_0^2 & -(1 * x_2 - 1 * x_0) \\ x_0 * x_1^2 - x_1 * x_0^2 & -(1 * x_1^2 - 1 * x_0^2) & 1 * x_1 - 1 * x_0 \end{pmatrix}$$

$$\begin{pmatrix} + & - & + \\ - & + & - \\ + & - & + \end{pmatrix}$$

Cofactor

$$\begin{pmatrix} x_1 x_2^2 - x_1^2 x_2 & x_2 (x_0^2 - x_2 x_0) & x_0 x_1^2 - x_1 x_0^2 \\ (x_1^2 - x_2^2) & x_2^2 - x_0^2 & -(x_1^2 - x_0^2) \\ x_2 - x_1 & - (x_2 - x_0) & x_1 - x_0 \end{pmatrix}$$

$(x_2 - x_1)$
Common
factor

$$\downarrow (x_2 - x_0)$$

$(x_1 - x_0)$
Common
Factor

$$\begin{array}{ccc}
 \left(\begin{array}{c}
 x_1 x_2^2 - x_1^2 x_2 \\
 (x_1^2 - x_2^2) \\
 x_2 - x_1
 \end{array} \right) & \left(\begin{array}{c}
 x_2 (x_0^2 - x_2 x_0) \\
 x_2^2 - x_0^2 \\
 - (x_2 - x_0)
 \end{array} \right) & \left(\begin{array}{c}
 x_0 x_1^2 - x_1 x_0^2 \\
 - (x_1^2 - x_0^2) \\
 x_1 - x_0
 \end{array} \right) \\
 \downarrow \text{factoring} \downarrow & & \\
 \left(\begin{array}{c}
 (x_2 - x_1) x_1 x_2 \\
 - (x_2 - x_1) (x_2 + x_1) \\
 (x_2 - x_1)
 \end{array} \right) & \left(\begin{array}{c}
 (x_2 - x_0) (-) (x_0 x_2) \\
 (x_2 - x_0) (x_2 + x_0) \\
 - (x_2 - x_0)
 \end{array} \right) & \left(\begin{array}{c}
 (x_1 - x_0) (x_1 + x_0) \\
 - (x_1^2 - x_0^2) \\
 (x_1 - x_0)
 \end{array} \right)
 \end{array}$$

Our determinant $D = (x_2 - x_0) \begin{array}{c} \diagup \\ (x_1 - x_0) (x_2 - x_1) \end{array} \begin{array}{c} \diagdown \\ (x_1 - x_0) (x_2 - x_1) \end{array}$

For the inverse of Vandermonde.

$$V^{-1} = \frac{1}{D} \text{ (Cofactor)}$$

$$V^{-1} = \frac{1}{D} \begin{bmatrix} 1 & x_0 & x_0^2 \\ 1 & x_1 & x_1^2 \\ 1 & x_2 & x_2^2 \end{bmatrix} \begin{pmatrix} a_0 \\ a_1 \\ a_2 \end{pmatrix} = \begin{pmatrix} y_0 \\ y_1 \\ y_2 \end{pmatrix}$$

$$V^{-1} = \frac{\begin{pmatrix} (x_2 - x_1)x_1 x_2 & (x_2 - x_0)(-)(x_0 x_2) & (x, -x_0)(x, >x_0) \\ -(x_2 - x_1)(x_2 + x_1) & (x_2 - x_0)(x_2 + x_0) & -(x_1^2 - x_0^2) \\ (x_2 - x_1) & -(x_2 - x_0) & (x, -x_0) \end{pmatrix}}{(x_2 - x_0)(x_1 - x_0)(x_2 - x_1)}$$

$$\begin{pmatrix} a_0 \\ a_1 \\ a_2 \end{pmatrix} = \begin{pmatrix} \frac{x_1 x_2}{(x_2 - x_0) * (x_1 - x_0)} & \frac{-x_0 x_2}{(x_1 - x_0) * (x_2 - x_1)} & \frac{x_0 x_1}{(x_2 - x_0) * (x_2 - x_1)} \\ \frac{-(x_2 + x_1)}{(x_2 - x_0) * (x_1 - x_0)} & \frac{(x_2 + x_0)}{(x_1 - x_0) * (x_2 - x_1)} & \frac{-(x_1 + x_0)}{(x_2 - x_0) * (x_2 - x_1)} \\ \frac{1}{(x_2 - x_0) * (x_1 - x_0)} & \frac{-1}{(x_1 - x_0) * (x_2 - x_1)} & \frac{1}{(x_2 - x_0) * (x_2 - x_1)} \end{pmatrix} * \begin{pmatrix} y_0 \\ y_1 \\ y_2 \end{pmatrix}$$

The process of finding the a 's coefficients of the polynomial is not attractive; it involves the solution of algebraic equations.