

Introduction to Local Buckling

Review of members with slender elements

(a) What are the chapters have a relation with Local Buckling

Chapter B Design requirements \rightarrow B4

Chapter E \rightarrow section E-7 (Design of Compressive Members)

CM # 14
2010

\rightarrow Q_s
 \rightarrow Q_A

Limiting values for F_y Grades
for slender / non slender members

CHAPTER B

DESIGN REQUIREMENTS

This chapter addresses general requirements for the analysis and design of steel structures applicable to all chapters of the specification.

The chapter is organized as follows:

- B1. General Provisions
- B2. Loads and Load Combinations
- B3. Design Basis
- B4. Member Properties
- B5. Fabrication and Erection
- B6. Quality Control and Quality Assurance
- B7. Evaluation of Existing Structures

Classification of Members slender \rightarrow or non slender

B4. MEMBER PROPERTIES

1. Classification of Sections for Local Buckling

For compression, sections are classified as *nonslender element* or *slender-element sections*. For a nonslender element section, the width-to-thickness ratios of its compression elements shall not exceed λ_r from Table B4.1a. If the width-to-thickness ratio of any compression element exceeds λ_r , the section is a slender-element section.

For flexure, sections are classified as *compact*, *noncompact* or *slender-element sections*. For a section to qualify as compact, its flanges must be continuously connected to the web or webs and the width-to-thickness ratios of its compression elements shall not exceed the limiting width-to-thickness ratios, λ_p , from Table B4.1b. If the width-to-thickness ratio of one or more compression elements exceeds λ_p , but does not exceed λ_r from Table B4.1b, the section is noncompact. If the width-to-thickness ratio of any compression element exceeds λ_r , the section is a slender-element section.

B4. MEMBER PROPERTIES

1. Classification of Sections for Local Buckling

For compression, sections are classified as nonslender element or *slender-element sections*. For a nonslender element section, the width-to-thickness ratios of its compression elements shall not exceed λ_r from Table B4.1a. If the width-to-thickness ratio of any compression element exceeds λ_r , the section is a slender-element section.

flexure

For flexure, sections are classified as *compact*, *noncompact* or slender-element sections. For a section to qualify as compact, its flanges must be continuously connected to the web or webs and the width-to-thickness ratios of its compression elements shall not exceed the limiting width-to-thickness ratios, λ_p , from Table B4.1b. If the width-to-thickness ratio of one or more compression elements exceeds λ_p , but does not exceed λ_r from Table B4.1b, the section is noncompact. If the width-to-thickness ratio of any compression element exceeds λ_r , the section is a slender-element section.

λ $\rightarrow b_f/t_f$ Flange → unstiffened
 λ $\rightarrow h_w/t_w$ web → stiffened

DESIGN OF MEMBERS FOR COMPRESSION

CM #14 #2010

This chapter addresses members subject to axial compression through the centroidal axis.

The chapter is organized as follows:

- E1. General Provisions
- E2. Effective Length
- E3. Flexural Buckling of Members without Slender Elements
- E4. Torsional and Flexural-Torsional Buckling of Members without Slender Elements
- E5. Single Angle Compression Members
- E6. Built-Up Members
- E7. Members with Slender Elements

→ Section E-7

User Note: For cases not included in this chapter the following sections apply:

- H1 – H2 Members subject to combined axial compression and flexure
- H3 Members subject to axial compression and torsion
- I2 Composite axially loaded members
- J4.4 Compressive strength of connecting elements

E7. MEMBERS WITH SLENDER ELEMENTS

Chapter E

This section applies to slender-element compression members, as defined in Section B4.1 for elements in uniform compression.

The *nominal compressive strength*, P_n , shall be the lowest value based on the applicable *limit states of flexural buckling, torsional buckling, and flexural-torsional buckling*.

Spec- 2010

CM # 14

$\frac{KL}{r} \rightarrow \frac{L_c}{r}$

Was replaced
in specs - 2016

$$P_n = F_{cr} A_g \quad (E7-1)$$

The critical stress, F_{cr} , shall be determined as follows:

(a) When $\frac{KL}{r} \leq 4.71 \sqrt{\frac{E}{QF_y}}$

$\left(\text{or } \frac{QF_y}{F_e} \leq 2.25 \right)$

Q new Factor
inelastic
Column

$$F_{cr} = Q \left[0.658 \frac{F_e}{F_y} \right] F_y \quad (E7-2)$$

(b) When $\frac{KL}{r} > 4.71 \sqrt{\frac{E}{QF_y}}$ $\left(\text{or } \frac{QF_y}{F_e} > 2.25 \right)$

Elastic Column

$$F_{cr} = 0.877 F_e \quad (E7-3)$$

$$\lambda_c^2 = \frac{F_y}{F_e}$$

$$F_y$$

$$\frac{F_y}{2.2S} = 0.44F_y$$

$$F_e = \frac{\pi^2 E}{(KL/r)^2} = \frac{F_y}{\lambda_c^2} \Rightarrow$$

E7-2

$$\lambda_c^2 = 2.2S$$

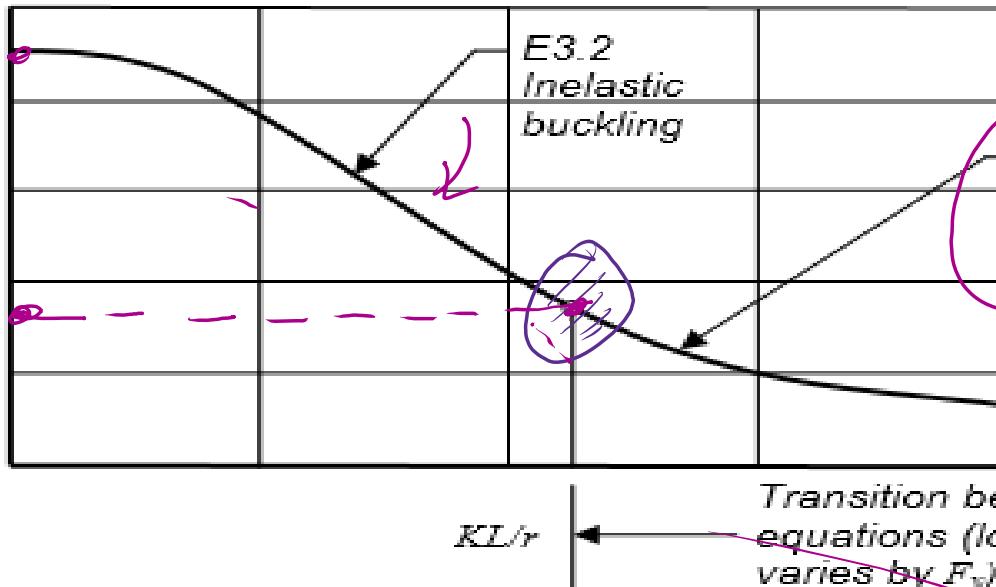


Figure E-1 Standard Column Curve

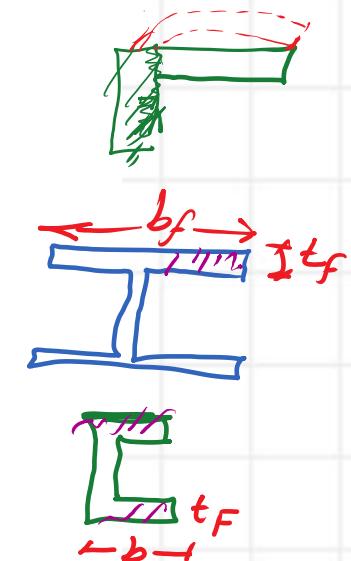
E7-3

$$(KL/r)^2 = \frac{2.2S \pi^2 E}{F_y}$$

$$\sqrt{\frac{KL}{r}} = 4.71 \sqrt{\frac{E}{F_y}}$$

TRANSITION POINT LIMITING VALUES OF KL/r		
F_y ksi (MPa)	Limiting KL/r	$0.44F_y$ ksi (MPa)
36 (248)	134	15.8 (109)
50 (345)	113	22.0 (152)
60 (414)	104	264. (182)
70 (483)	96	30.8 (212)

$$4.71 \sqrt{\frac{E}{F_y}} \Rightarrow 4.71 \sqrt{\frac{2900}{36}} = 133.68$$


1a. Unstiffened Elements

Unstiffened

For *unstiffened elements* supported along only one edge parallel to the direction of the compression force, the width shall be taken as follows:

- (a) For flanges of I-shaped members and tees, the width, b , is one-half the full-flange width, b_f .
- (b) For legs of angles and flanges of channels and zees, the width, b , is the full *nominal dimension*.
- (c) For plates, the width, b , is the distance from the free edge to the first row of *fasteners* or line of welds.
- (d) For stems of tees, d is taken as the full nominal depth of the section.

Unstiffened

What are the Unstiffened items

Specification for Structural Steel Buildings, June 22, 2010
AMERICAN INSTITUTE OF STEEL CONSTRUCTION

2010

$\Rightarrow CM \neq 14$ 16.1 - 40/41 Section E

1. Slender Unstiffened Elements, Q_s

The reduction factor, Q_s , for slender *unstiffened elements* is defined as follows:

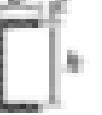
(a) For flanges, angles and plates projecting from rolled *columns* or other compression members:

(i) When $\frac{b}{t} \leq 0.56\sqrt{\frac{E}{F_y}}$

$$Q_s = 1.0 \quad (E7-4)$$

Q_s Equations

(ii) When $0.56\sqrt{\frac{E}{F_y}} < \frac{b}{t} < 1.03\sqrt{\frac{E}{F_y}}$



$$Q_s = 1.415 - 0.74\left(\frac{b}{t}\right)\sqrt{\frac{F_y}{E}} \quad (E7-5)$$

(iii) When $\frac{b}{t} \geq 1.03\sqrt{\frac{E}{F_y}}$

$$Q_s = \frac{0.69E}{F_y\left(\frac{b}{t}\right)^2} \quad (E7-6)$$

TABLE B4.1a
Width-to-Thickness Ratios: Compression Elements
Members Subject to Axial Compression

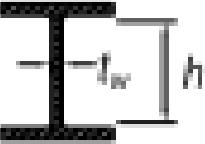
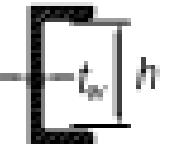
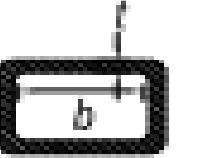
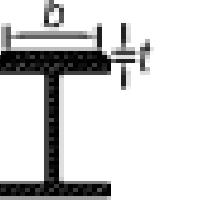
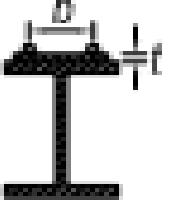
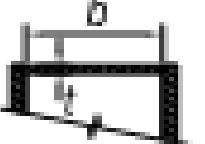
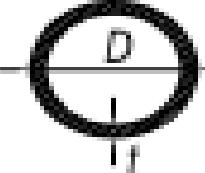
→ *Axial Compression*

Category	Description of Element	Width-to-Thickness Ratio	Limiting Width-to-Thickness Ratio A_c (nonslender/slender)	Examples
Unstiffened Elements	Flanges of rolled I-shaped sections, plates projecting from rolled I-shaped sections; outstanding legs of pairs of angles connected with continuous contact, flanges of channels, and flanges of tees.	0.75	$0.56 \sqrt{\frac{E}{F_y}}$	
	Flanges of built-up I-shaped sections and plates or angle legs projecting from built-up I-shaped sections	0.75	$0.64 \sqrt{\frac{K_c E}{F_y}}$	
	Legs of single angles, legs of double angles with separators, and all other unstiffened elements.	0.75	$0.45 \sqrt{\frac{E}{F_y}}$	
	Stems of tees.	0.75	$0.75 \sqrt{\frac{E}{F_y}}$	

Flanges of W

$$\Rightarrow 0.56 \sqrt{\frac{E}{F_y}}$$

$$\rightarrow 0.64 \sqrt{\frac{K_c E}{F_y}}$$








Built up

$$Legs \rightarrow 0.45 \sqrt{\frac{E}{F_y}}$$

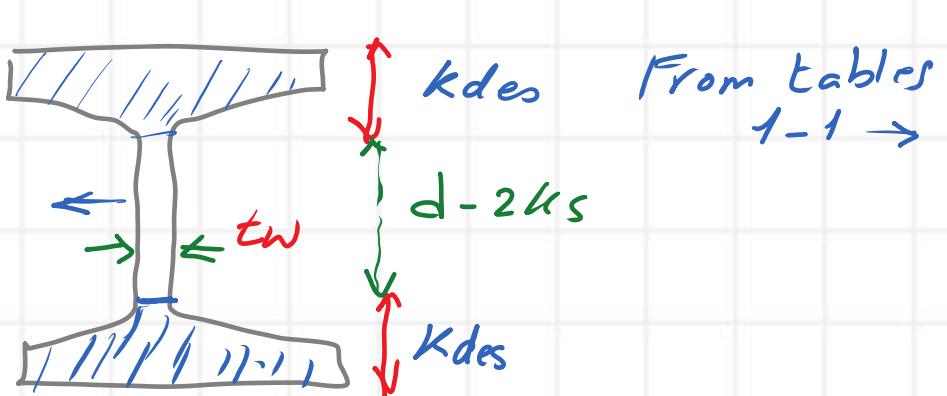
$$0.75 \sqrt{\frac{E}{F_y}}$$

B4.1Q

stiffened Elements CM # 14
2010

Stiffened Elements					
5	Webs of doubly-symmetric I-shaped sections and channels	h/t_w	$1.40 \sqrt{\frac{E}{F_y}}$		
6	Walls of rectangular HSS and boxes of uniform thickness	b/t	$1.40 \sqrt{\frac{E}{F_y}}$		b/t
7	Flange cover plates and diaphragm plates between lines of fasteners or welds	b/t	$1.40 \sqrt{\frac{E}{F_y}}$		
8	All other stiffened elements	b/t	$1.40 \sqrt{\frac{E}{F_y}}$		b/t
9	Round HSS	D/t	$0.11 \frac{E}{F_y}$		D/t

1b. Stiffened Elements


Sec B-3

For *stiffened elements* supported along two edges parallel to the direction of the compression force, the width shall be taken as follows:

(a) For webs of rolled or *formed sections*, h is the clear distance between flanges less the fillet or corner radius at each flange; h_c is twice the distance from the center of gravity to the inside face of the compression flange less the fillet or corner radius.

$$\lambda = \frac{d - 2k_s}{t_w}$$

$$\lambda_r = 1.49 \sqrt{\frac{F_y}{E}}$$

Item -5
stiffened

Prepared by Eng. Maged Kamel.

2. Slender Stiffened Elements, Q_a

The reduction factor, Q_a , for slender *stiffened elements* is defined as follows:

$$Q_a = \frac{A_e}{A_g} \quad (E7-16)$$

where

A_g = gross cross-sectional area of member, in.² (mm²)

A_e = summation of the effective areas of the cross section based on the reduced effective width, b_e , in.² (mm²)

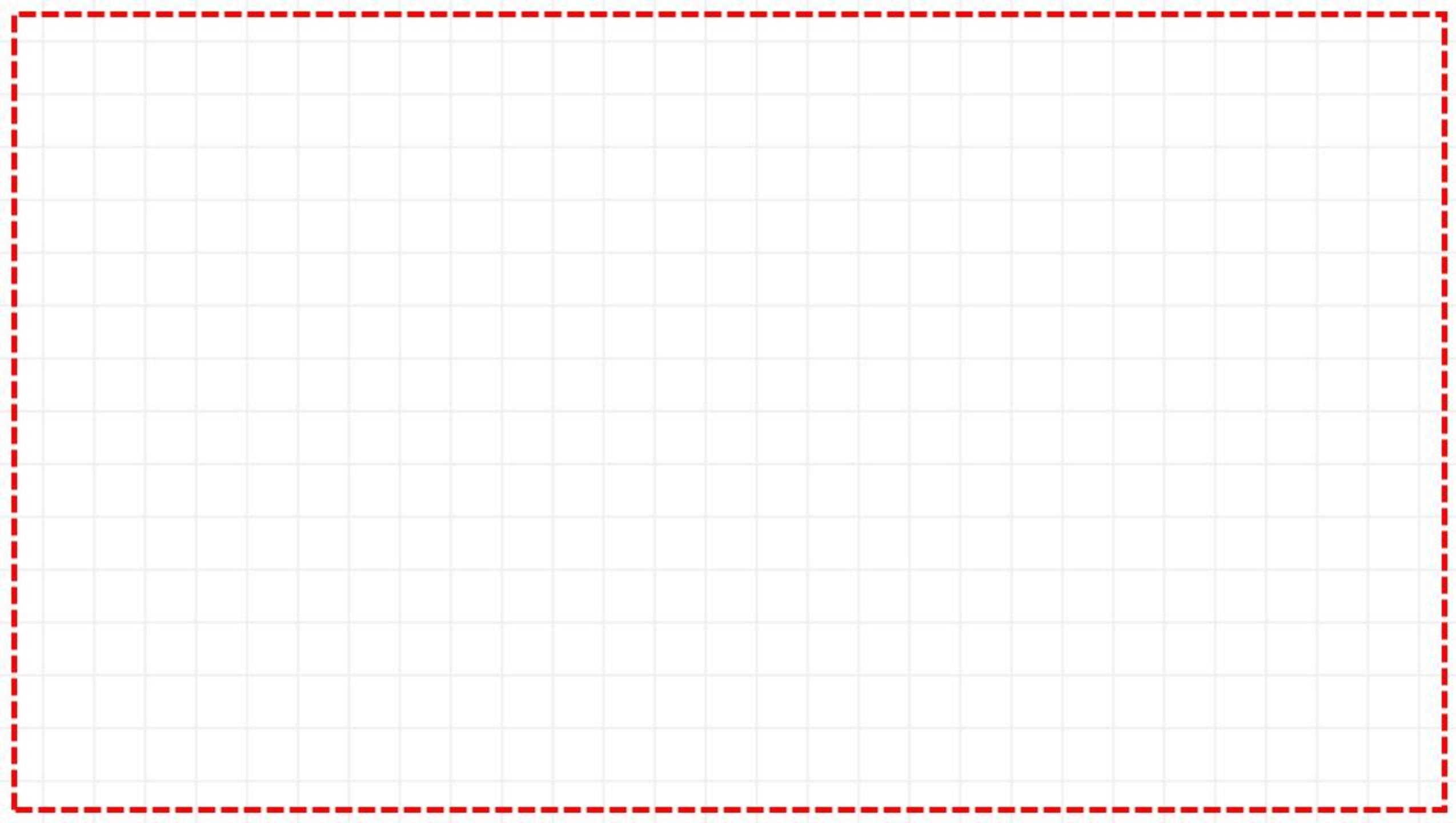
The reduced effective width, b_e , is determined as follows:

(a) For uniformly compressed slender elements, with $\frac{b}{t} \geq 1.49 \sqrt{\frac{E}{f}}$, except flanges of square and rectangular sections of uniform thickness:

$$b_e = 1.92t \sqrt{\frac{E}{f}} \left[1 - \frac{0.34}{(b/t) \sqrt{\frac{E}{f}}} \right] \leq b \quad (E7-17)$$

where

f is taken as F_{cr} with F_{cr} calculated based on $Q = 1.0$


(b) For flanges of square and rectangular *slender-element sections* of uniform thickness with $\frac{b}{t} \geq 1.40 \sqrt{\frac{E}{f}}$:

$$b_e = 1.92t \sqrt{\frac{E}{f}} \left[1 - \frac{0.38}{(b/t) \sqrt{\frac{E}{f}}} \right] \leq b \quad (E7-18)$$

where

$$f = P_n/A_e$$

User Note: In lieu of calculating $f = P_n/A_e$, which requires iteration, f may be taken equal to F_y . This will result in a slightly conservative estimate of *column available strength*.

