

Objective of lecture.

To understand the following points

1- Capital recovery.

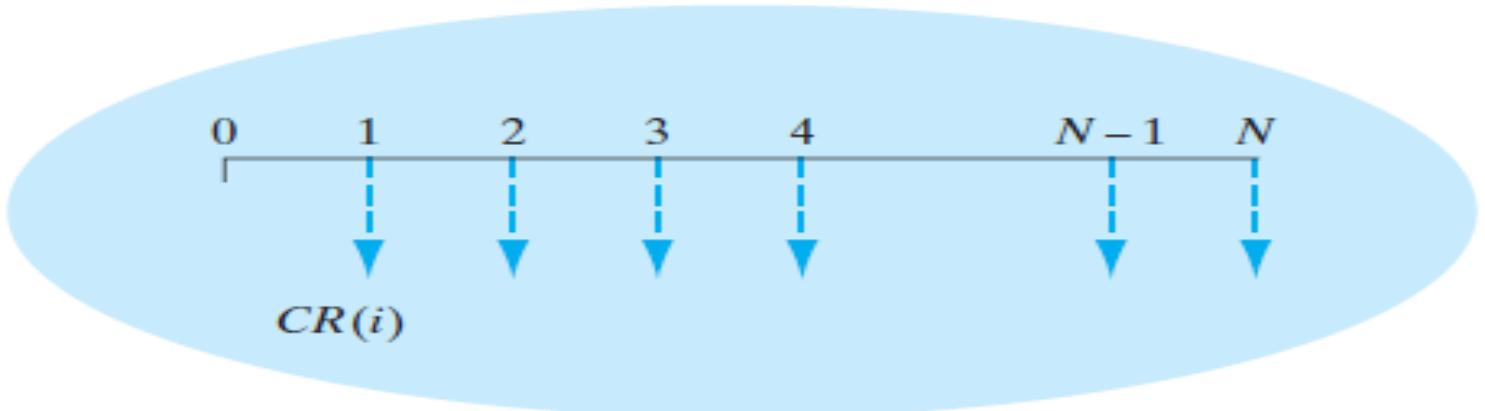
2-EUAB,EUAC,EUAW.

Solved examples

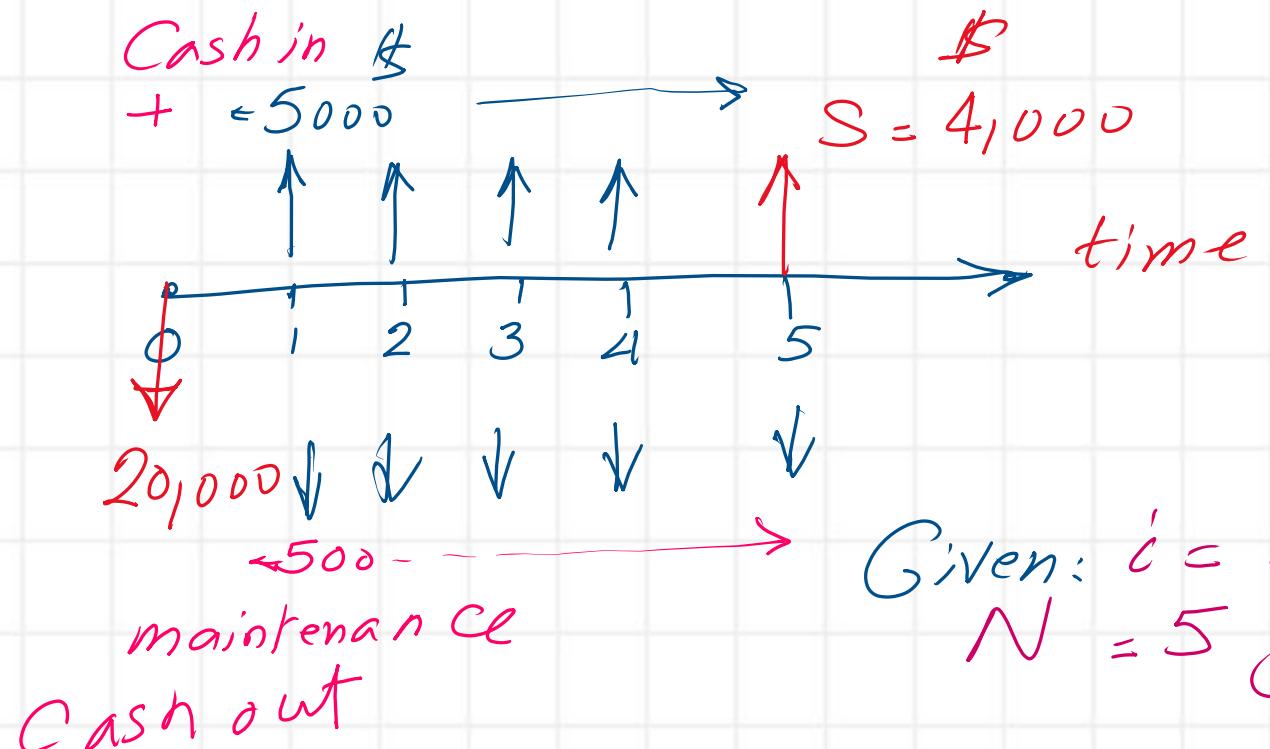
Capital Recovery and AW Value

استرداد رأس المال

- Capital Recovery is the equivalent annual cost of obtaining the asset plus the salvage
- CR is a function of {P, SV, i%, and n }
- AW is comprised of two components: capital recovery for the initial investment P at a stated interest rate (MARR) and the equivalent annual amount A


- An alternative usually has the following cash flow estimates:
 - **Initial Investment (P)** – the total first cost of all assets and services required to initiate the alternative.
 - **Salvage Value (SV)** – the terminal estimated value of assets at the end of their useful life.
 - **Annual Amount (A)** – the equivalent annual amount; typically this is the annual operating cost (AOC).

Two general monetary transactions are associated with the purchase and eventual retirement of a capital asset: its initial cost (I) and its salvage value (S). Taking into account these sums, we calculate the capital recovery factor as follows:


$$CR(i) = I(A/P, i, N) - S(A/F, i, N). \quad (6.2)$$

$$CR(i) = (I - S)(A/P, i, N) + iS$$

Consider a machine that costs \$20,000 and has a five-year useful life. At the end of the five years, it can be sold for \$4,000 after tax adjustment. The annual operating and maintenance (O&M) costs are about \$500. If the firm could earn an after-tax revenue of \$5,000 per year with this machine, should it be purchased at an interest rate of 10%? (All benefits and costs associated with the machine are accounted for in these figures.)

$$P = 20,000 \text{ (-ve)}$$

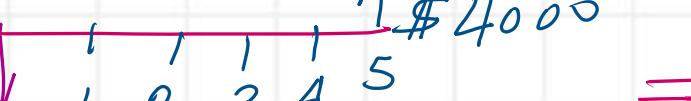
$$S = 4000$$

$$\text{Revenue } A = +5000 \text{ (-ve)}$$

$$\text{Maintenance} = 500 \text{ (-ve)}$$

Given: $i = 10\%$. $CR = I\left(\frac{A}{P}, i\%, N\right) - S\left(\frac{A}{F}, i\%, N\right)$

$$N = 5 \text{ years}$$


10%		Compound Interest Factors						10%	
Single Payment				Uniform Payment Series			Arithmetic Gradient		
Compound Amount Factor Find F Given P	Present Worth Factor Find P Given F	Sinking Fund Factor Find A Given F	Capital Recovery Factor Find A Given P	Compound Amount Factor Find F Given A	Present Worth Factor Find P Given A	Gradient Uniform Series Find A Given G	Gradient Present Worth Find P Given G	$i = 10\%$	
n	F/P	P/F	A/F	A/P	F/A	P/A	A/G	P/G	n
1	1.100	.9091	1.0000	1.1000	1.000	0.909	0	0	1
2	1.210	.8264	.4762	.5762	2.100	1.736	0.476	0.826	2
3	1.331	.7513	.3021	.4021	3.310	2.487	0.937	2.329	3
4	1.464	.6830	.2155	.3155	4.641	3.170	1.381	4.378	4
5	1.611	.6209	.1638	.2638	6.105	3.791	1.810	6.862	5

$$A/P = 0.2638$$

For $N = 5$ years

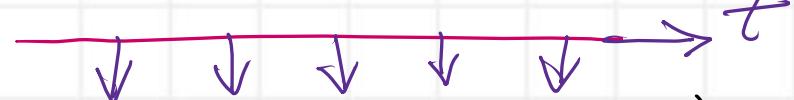
$$A_1 = 20,000 (0.2638) = 5276$$

while $A/F = 0.1638$

$$=$$

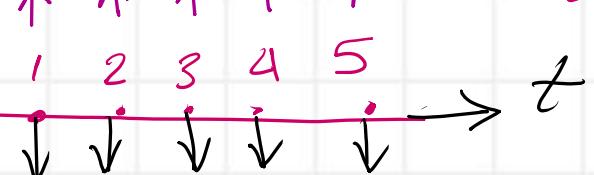
$$A_2 = 4000 (0.1638) = 655.2$$

↑ ↑ ↑ ↑ ↑
1 2 3 4 5


\$5276 $\rightarrow A_1$

t

10%			Compound Interest Factors						10%		
Single Payment			Uniform Payment Series			Arithmetic Gradient					
Compound Amount Factor Find F Given P	Present Worth Factor Find P Given F	Sinking Fund Factor Find A Given F	Capital Recovery Factor Find A Given P	Compound Amount Factor Find F Given A	Present Worth Factor Find P Given A	Gradient Uniform Series Find A Given G	Gradient Present Worth Find P Given G				
<i>n</i>	<i>F/P</i>	<i>P/F</i>	<i>A/F</i>	<i>A/P</i>	<i>F/A</i>	<i>P/A</i>	<i>A/G</i>	<i>P/G</i>			<i>n</i>
1	1.100	.9091	1.0000	1.1000	1.000	0.909	0	0			1
2	1.210	.8264	.4762	.5762	2.100	1.736	0.476	0.826			2
3	1.331	.7513	.3021	.4021	3.310	2.487	0.937	2.329			3
4	1.464	.6830	.2155	.3155	4.641	3.170	1.381	4.378			4
5	1.611	.6209	.1638	.2638	6.105	3.791	1.810	6.862			5


$$A_3: \text{operation Cost} = \$500$$

C/R and maintenance

$$\sum A = 500 + 5276 - (655.2) = 5120.8$$

$$A_2 = 4000 (0.1638) = 655.2$$

$$A_3 = 5276 \rightarrow A_1$$

The Second Formula
Can be used to get $CR(i)$

$$I = 20000$$

$$S = 4000$$

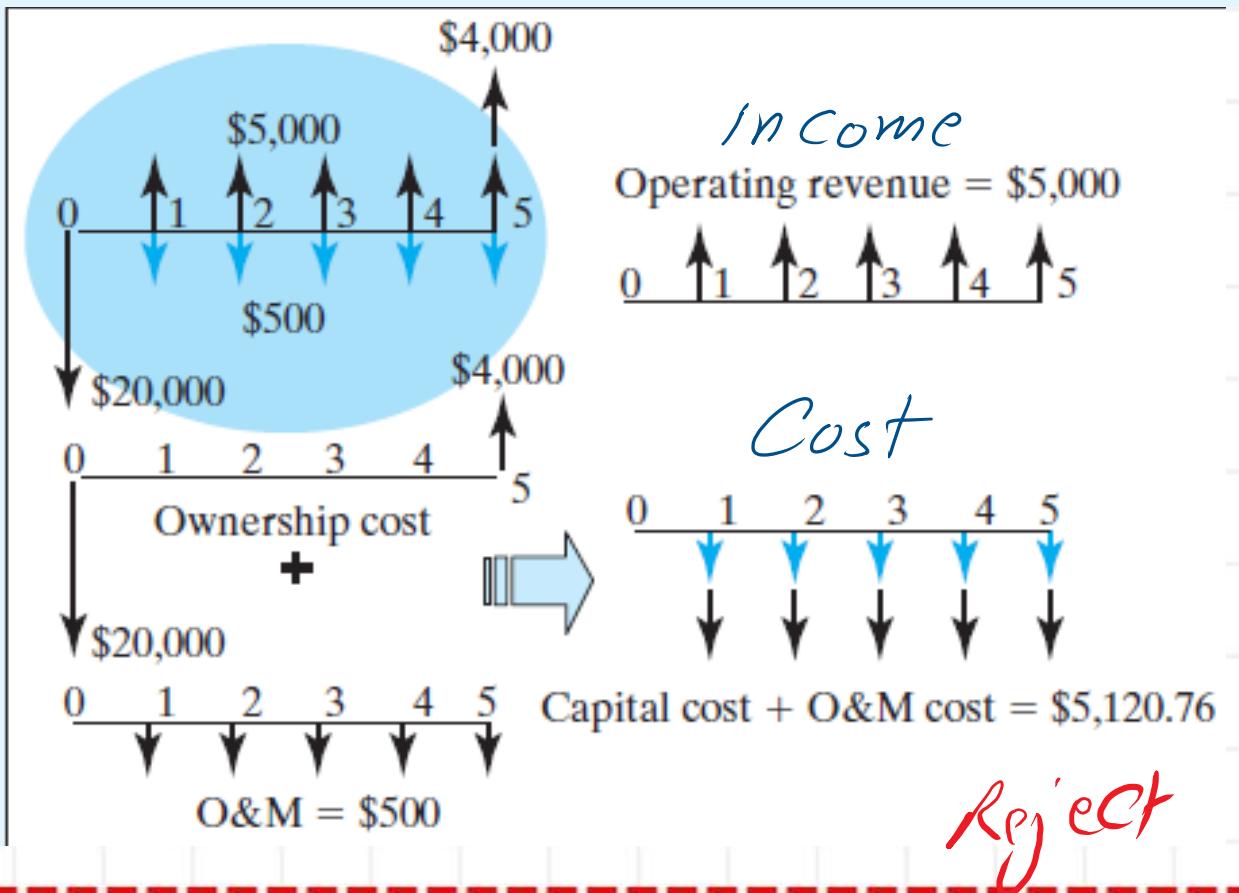
$$N$$

$$N = 5$$

$$i = 10\%$$

$$(CR(i) = (I - S)(A/P, i, N) + iS) \rightarrow$$

$$CR = (20,000 - 4,000) 0.2638 + (0.10)(4000) = 4620.8$$



A_2 : Maintenance Cost

$$= 500$$

$$CR(i) = 4620.8 - 500 = 5120.80$$

Consider a machine that costs \$20,000 and has a five-year useful life. At the end of the five years, it can be sold for \$4,000 after tax adjustment. The annual operating and maintenance (O&M) costs are about \$500. If the firm could earn an after-tax revenue of \$5,000 per year with this machine, should it be purchased at an interest rate of 10%? (All benefits and costs associated with the machine are accounted for in these figures.)

$$CR = I\left(\frac{A}{P}, i\%, n\right) - S\left(\frac{A}{F}, i\%, n\right)$$

$$i = 10\%$$

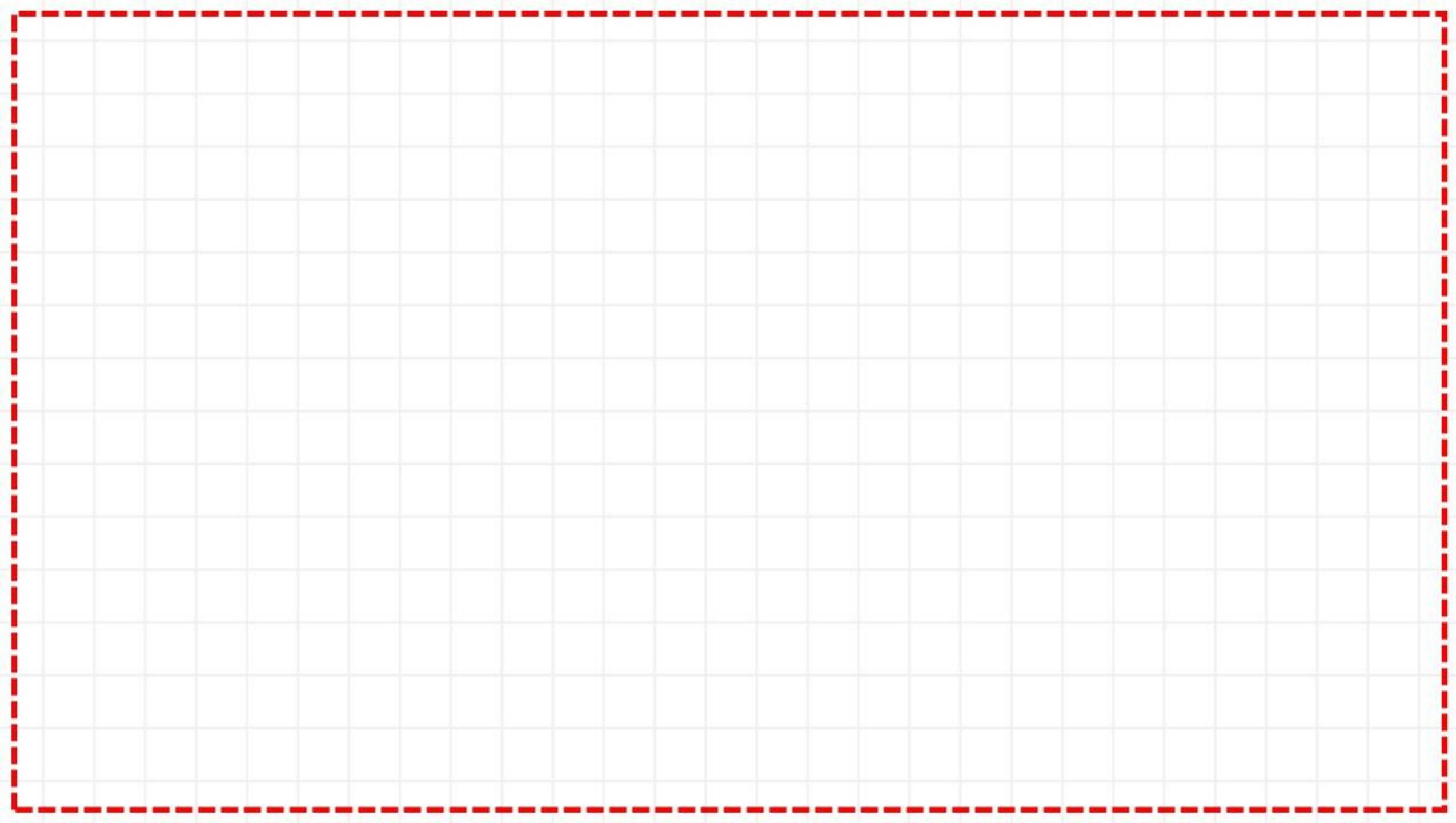
$$n = 5$$

$$\frac{A}{P} = 0.2638$$

$$\frac{A}{F} = 0.1638$$

$$ADD \\ O\cdot M$$

$$CR = - (0.2638 (20,000)$$


$$+ (0.1638 (4000))$$

$$= -5276 + 6552$$

$$= -4620.8 - 500$$

$$= -5120.8$$

$$Rev < CR + Ma$$

