

A matrix is said to be in row echelon form

Sec 1.2 Page 29

- (i) If the first nonzero entry in each nonzero row is 1.
- (ii) If row k does not consist entirely of zeros, the number of leading zero entries in row $k + 1$ is greater than the number of leading zero entries in row k .
- (iii) If there are rows whose entries are all zero, they are below the rows having nonzero entries.

✓ (i) start with 1 as First non zero Entry row

ALL Zeros must be placed below rows of nonzeros
i.e.

DAVID C. LAY

REF From 1-3
RREF From 1-3 & 4-5

A rectangular matrix is in **echelon form** (or **row echelon form**) if it has the following three properties:

1. All nonzero rows are above any rows of all zeros.
2. Each leading entry of a row is in a column to the right of the leading entry of the row above it.
3. All entries in a column below a leading entry are zeros.

If a matrix in echelon form satisfies the following additional conditions, then it is in **reduced echelon form** (or **reduced row echelon form**):

4. The leading entry in each nonzero row is 1.
5. Each leading 1 is the only nonzero entry in its column.

Definition: A matrix is in row echelon form (REF) if it satisfies the following three properties:

→ states non zero

- (i) All nonzero rows are above any rows of all zeros.

Mnemonic: “Rows of zeros have to be at the bottom!”

- (ii) Each leading (nonzero) entry of a row is in a column to the right of the leading (nonzero) entry of the row above it.

Mnemonic: “As you go down, leading entries must move to the right!”

- (iii) All entries in a column below a leading (nonzero) entry are zeros.

Mnemonic: “Entries below leading entries must be zero!”

Definition: A matrix is in reduced row echelon form (RREF) if it satisfies the following three properties:

(i)-(iii) It is in REF.

(iv) The leading (nonzero) entry in each row is 1.

← must
Equal 1

Mnemonic: “Leading entries must equal 1!”

(v) Each leading 1 is the only nonzero entry in its column.

Mnemonic: “Entries above leading entries must also be zero!”

Case - 1 as R.E.F

First leading Pivot is non Zero, First Entry is 1

$$\begin{array}{l} \text{row } k \text{ } 0's = 1 \\ \text{row } k+1 \text{ } 0's = 2 \end{array} \left\{ \begin{array}{c} 1 \ a \ b \\ 0 \ 1 \ d \\ 0 \ 0 \ 1 \end{array} \right.$$

Row-echelon form

$$\begin{array}{l} \text{2nd} \\ \text{Leading} \end{array} \left[\begin{array}{ccc} 1 & a & b \\ 0 & 1 & d \\ 0 & 0 & 1 \end{array} \right]$$

2nd Leading \rightarrow First non-Zero Element in - Row - 2
 \rightarrow Located below and to the right from - 1st - Leading
 \rightarrow Column 2, one Zero below the 2nd Leading

Case - 1

Row-echelon form

$$\begin{array}{l} \text{First} \\ \text{Leading} \end{array} \left[\begin{array}{cccc} 1 & a & b & \\ 0 & 1 & d & \\ 0 & 0 & 1 & \end{array} \right] \begin{array}{l} \text{Zero's} \\ \text{are below} \\ \text{the Pivot} \end{array} \begin{array}{l} \downarrow \\ \text{Zero} \end{array}$$

$$\left[\begin{array}{cccc} 1 & & & \\ 0 & 1 & & \\ 0 & 0 & 1 & \end{array} \right] \begin{array}{l} \text{First non-Zero} \\ \text{Element in 2nd} \\ \text{row} \end{array}$$

This is how the process might work for a 3×4 matrix:

$$\left[\begin{array}{cccc} 1 & \boxed{1} & \boxed{1} & \boxed{1} \\ 0 & \boxed{1} & \boxed{1} & \boxed{1} \\ 0 & \boxed{1} & \boxed{1} & \boxed{1} \end{array} \right]$$

$$\left[\begin{array}{cccc} 1 & \boxed{1} & \boxed{1} & \boxed{1} \\ 0 & 1 & \boxed{1} & \boxed{1} \\ 0 & 0 & \boxed{1} & \boxed{1} \end{array} \right]$$

$\boxed{1}$ has a value

$$\left[\begin{array}{cccc} 1 & \boxed{1} & \boxed{0} & \boxed{0} \\ 0 & 1 & \boxed{1} & \boxed{0} \\ 0 & 0 & 1 & \boxed{1} \end{array} \right]$$

Once an augmented matrix is in row-echelon form, we can solve the corresponding linear system using back-substitution. This technique is called **Gaussian elimination**, in honor of its inventor, the German mathematician C. F. Gauss (see page 326).

What is a *Pivot Column*?

A pivot position in a matrix A is a location in A that corresponds to a leading 1 in the reduced echelon form of A . A pivot column is a column of A that contains a pivot position.

$$\left[\begin{array}{ccc|c} 1 & \boxed{1} & \boxed{1} & 1 \\ 0 & 1 & \boxed{1} & 1 \\ 0 & 0 & 1 & 1 \end{array} \right]$$

First, 2nd, 3rd pivot columns

RREF

Reduced Row Echelon Method

→ Gauss - Jordan

Another matrix method for solving systems is the **reduced row echelon method**. Earlier, we saw that the row echelon form of a matrix has 1s along the main diagonal and 0s below. **The reduced row echelon form has 1s along the main diagonal and 0s both below and above**. For example, the augmented matrix of the system

$$\begin{array}{l} x + y + z = 6 \\ 2x - y + z = 5 \\ 3x + y - 2z = 9 \end{array} \quad \text{is} \quad \left[\begin{array}{ccc|c} 1 & 1 & 1 & 6 \\ 2 & -1 & 1 & 5 \\ 3 & 1 & -2 & 9 \end{array} \right].$$

By using row transformations, this augmented matrix can be transformed to

Reduced row echelon form

$$\left[\begin{array}{ccc|c} 1 & 0 & 0 & 3 \\ 0 & 1 & 0 & 2 \\ 0 & 0 & 1 & 1 \end{array} \right], \quad \text{which represents the system}$$

$$\begin{aligned} x &= 3 \\ y &= 2 \\ z &= 1. \end{aligned}$$

Zeros
are above
and below

The solution set is $\{(3, 2, 1)\}$. There is no need for back-substitution with reduced's row echelon form.

Three pivots = Three pivot Columns

A pivot position in a matrix A is a location in A that corresponds to a leading 1 in the reduced echelon form of A . A pivot column is a column of A that contains a pivot position.

EXAMPLE 2 Row reduce the matrix A below to echelon form, and locate the pivot columns of A .

$$A = \begin{bmatrix} 0 & -3 & -6 & 4 & 9 \\ -1 & -2 & -1 & 3 & 1 \\ -2 & -3 & 0 & 3 & -1 \\ 1 & 4 & 5 & -9 & -7 \end{bmatrix} \rightarrow \text{REF}$$

Solution

$$A = \begin{bmatrix} 0 & -3 & -6 & 4 & 9 \\ -1 & -2 & -1 & 3 & 1 \\ -2 & -3 & 0 & 3 & -1 \\ 1 & 4 & 5 & -9 & -7 \end{bmatrix}$$

$$R_4 \rightarrow R_1 \quad \uparrow$$

$$\approx \begin{bmatrix} 1 & 4 & 5 & -9 & -7 \\ -1 & -2 & -1 & 3 & 1 \\ -2 & -3 & 0 & 3 & -1 \\ 0 & -3 & -6 & 4 & 9 \end{bmatrix}$$

1 is the First Pivot $\Rightarrow (-1, -2, 1)$ to be Zeros

$$R_2 + \left(\frac{-1}{1}\right)R_1 \rightarrow R_2, R_3 + \left(\frac{-2}{1}\right)R_1 \rightarrow R_3$$

$$R_4 + (1)R_1 \rightarrow R_4$$

Definition: A matrix is in row echelon form (REF) if it satisfies the following three properties:

(i) All nonzero rows are above any rows of all zeros.

Mnemonic: "Rows of zeros have to be at the bottom!"

(ii) Each leading (nonzero) entry of a row is in a column to the right of the leading (nonzero) entry of the row above it.

Mnemonic: "As you go down, leading entries must move to the right!"

(iii) All entries in a column below a leading (nonzero) entry are zeros.

Mnemonic: "Entries below leading entries must be zero!"

$$\left[\begin{array}{ccccc} 1 & 4 & 5 & -9 & -7 \\ -1 & -2 & -1 & 3 & 1 \\ -2 & -3 & 0 & 3 & -1 \\ 0 & -3 & -6 & 4 & 9 \end{array} \right] \rightarrow \begin{array}{l} \text{Same} \\ R_2 + R_1 \rightarrow R_2 \\ R_3 + 2R_1 \rightarrow R_3 \end{array} \Rightarrow \left[\begin{array}{ccccc} 1 & 4 & 5 & -9 & -7 \\ 0 & 2 & 4 & -6 & -6 \\ 0 & 0 & 10 & -15 & -15 \\ 0 & 0 & -3 & 4 & 9 \end{array} \right]$$

2nd pivot $\rightarrow R_2 \& C_2$ is non zero ok

\hookrightarrow below to be zeros $R_3 - \frac{5}{2}R_2 \rightarrow R_3$
 $R_4 + \frac{3}{2}R_2 \rightarrow R_4$

$$\left[\begin{array}{ccccc} 1 & 4 & 5 & -9 & -7 \\ 0 & 2 & 4 & -6 & -6 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & -5 & 0 \end{array} \right] \xrightarrow{R_4 \rightarrow R_3}$$

because zeros should be at the bottom

$$\left[\begin{array}{ccccc} 1 & 4 & 5 & -9 & -7 \\ 0 & 2 & 4 & -6 & -6 \\ 0 & 0 & 0 & -5 & 0 \end{array} \right]$$

Pivot Columns are $C_1 \& C_2 \& C_4$
Pivots are 1 & 2 & -5

The matrix is in echelon form and thus reveals that columns 1, 2, and 4 of A are pivot columns.

$$A = \left[\begin{array}{ccccc} & c_1 & c_2 & c_3 & c_4 \\ \hline & 0 & -3 & -6 & 4 & 9 \\ & -1 & -2 & -1 & 3 & 1 \\ & -2 & -3 & 0 & 3 & -1 \\ & 1 & 4 & 5 & -9 & -7 \end{array} \right]$$

Original matrix

(3)

Pivot positions

Pivot columns

