

DISCRETE MATH

Symbols

$x \in X$	x is a member of X
$\{ \}, \emptyset$	The empty (or null) set
$S \subseteq T$	S is a subset of T
$S \subset T$	S is a proper subset of T
(a, b)	Ordered pair
$P(S)$	Power set of S
(a_1, a_2, \dots, a_n)	n-tuple
$A \times B$	Cartesian product of A and B
$A \cup B$	Union of A and B
$A \cap B$	Intersection of A and B
$\forall x$	Universal qualification for all x; for any each x
$\exists y$	Uniqueness qualification there exists y
A binary relation from A to B is a subset of $A \times B$.	

Roster Notation

List elements of a set inside braces {}, separated by commas.

The Set of **Natural Numbers**: $\{1, 2, 3, 4, 5, \dots\}$

The Set of **Whole Numbers**: $\{0, 1, 2, 3, 4, 5, \dots\}$

The Set of **Integers**: $\{\dots, -5, -4, -3, -2, -1, 0, 1, 2, 3, 4, 5, \dots\}$

The Set of **Rational Numbers**: $\left\{ \frac{a}{b} \mid a \text{ and } b \text{ are integers and } b \neq 0 \right\}$

\in - is an element of

\notin - is not an element of

Roster Notation

$$3 \in \{1, 2, 3, 4, 5\}$$

$$\frac{1}{3} \notin \{1, 2, 3, 4, 5\}$$

$$50 \in \{x \mid x \text{ is an integer}\}$$

$$-5 \in \{x \mid x \text{ is a rational number}\}$$

Example #1

Let G is the set of whole Number < 10

$$G = \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9\}$$

$(0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, \dots)$

Example #2

Let X is the set of all odd Numbers < 12

$$X = \{1, 3, 5, 7, 9, 11\}$$

Example #3

Which of the following is the set of odd whole numbers less than 10?

- C = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}
- D = {0, 2, 4, 6, 8}
- E = {1, 3, 5, 7, 9}
- None of the above.

Equality of Sets

$$A = \{1, 3, 5, 7\}$$

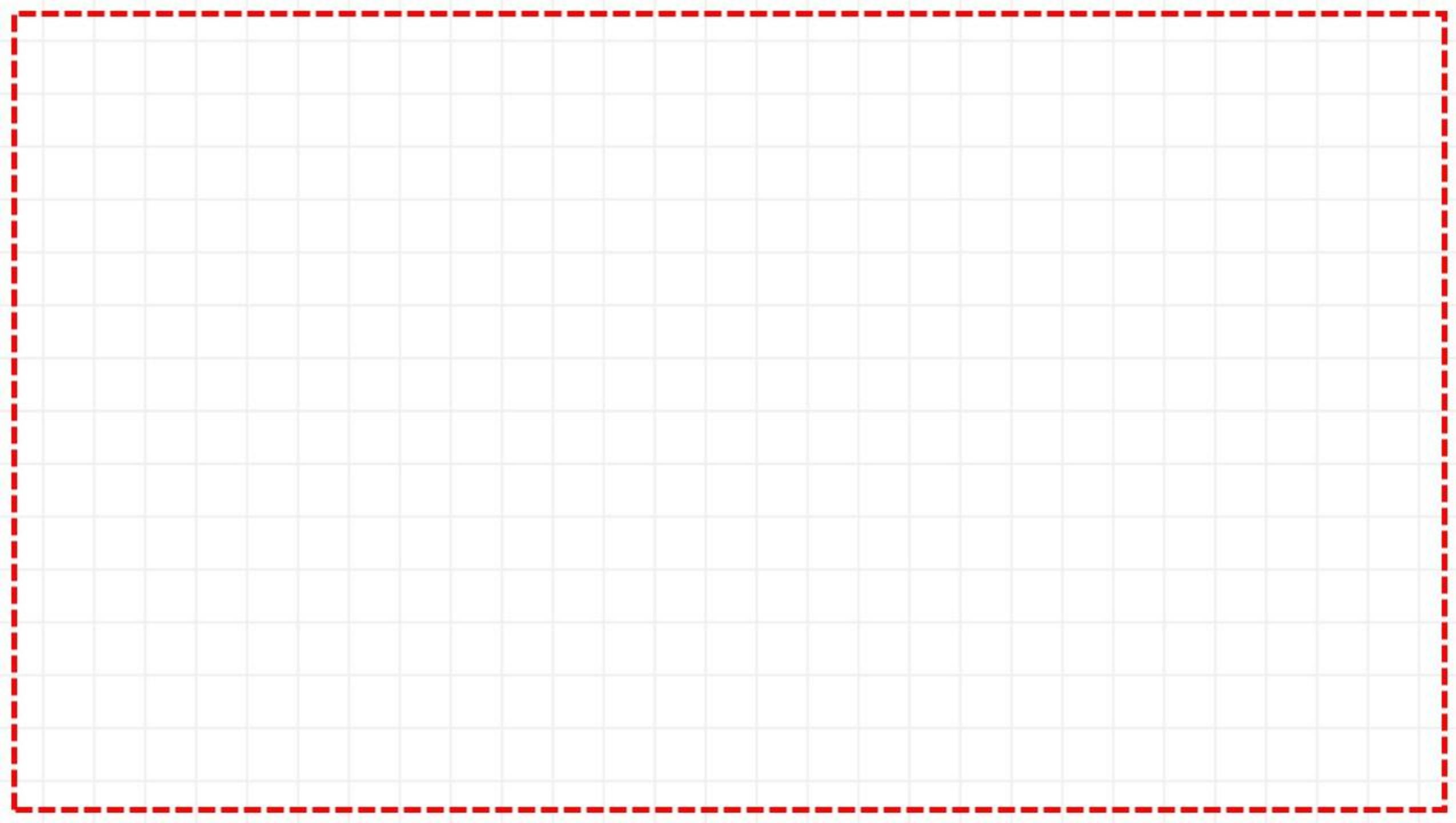
is $A = B$?

$$B = \{3, 7, 1, 5\}$$

$A = B$ why all elements of A is the
same as B

Example #4 Let R all set of whole Number < 5
Let $S = \{4, 0, 2, 3, 1\}$ are they equal?

Solution


$$R = \{0, 1, 2, 3, 4\} \quad S = \{4, 0, 2, 3, 1\} \quad R = S$$

Examine Set whether finite or infinite

a) The set $\{ \dots, -3, -1, 0, 1, 2, 3, 4, \dots \}$ infinite

The list goes forever and has all the counting numbers and all the integers.

b) The Set of all Natural numbers between (0, 5)
 $\{ 1, 2, 3, 4, 5 \}$ Finite Set

