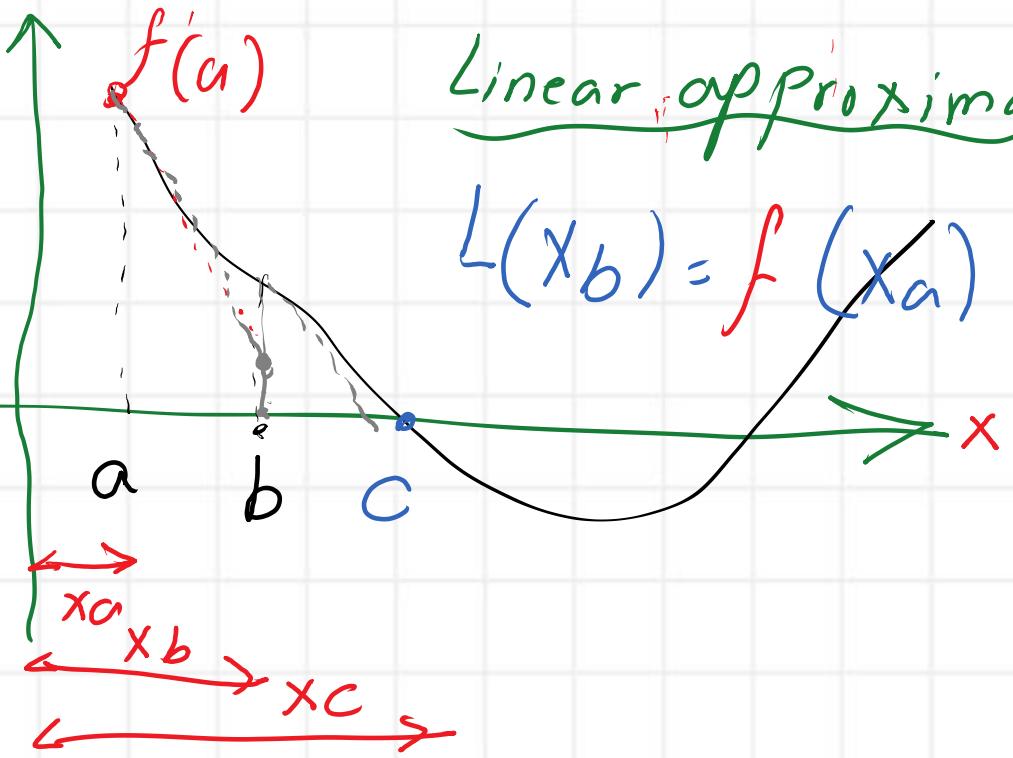


Introduction to Newton-Raphson method



Linear approximation $f(x_b) \approx L(x_b)$

$$L(x_b) = f(x_a) + f'(a)(x_b - x_a)$$

We can get an expression
For x_b

$$x_b - x_a = \frac{1}{f'(a)} [f(x_b) - f(x_a)]$$

$$x_b = x_a + \frac{1}{f'(a)} (f(x_b) - f(x_a))$$

$$x_{\text{new}} = x_{\text{initial}} + \frac{1}{f'(a)} [f(x_{\text{new}}) - f(x_{\text{initial}})]$$

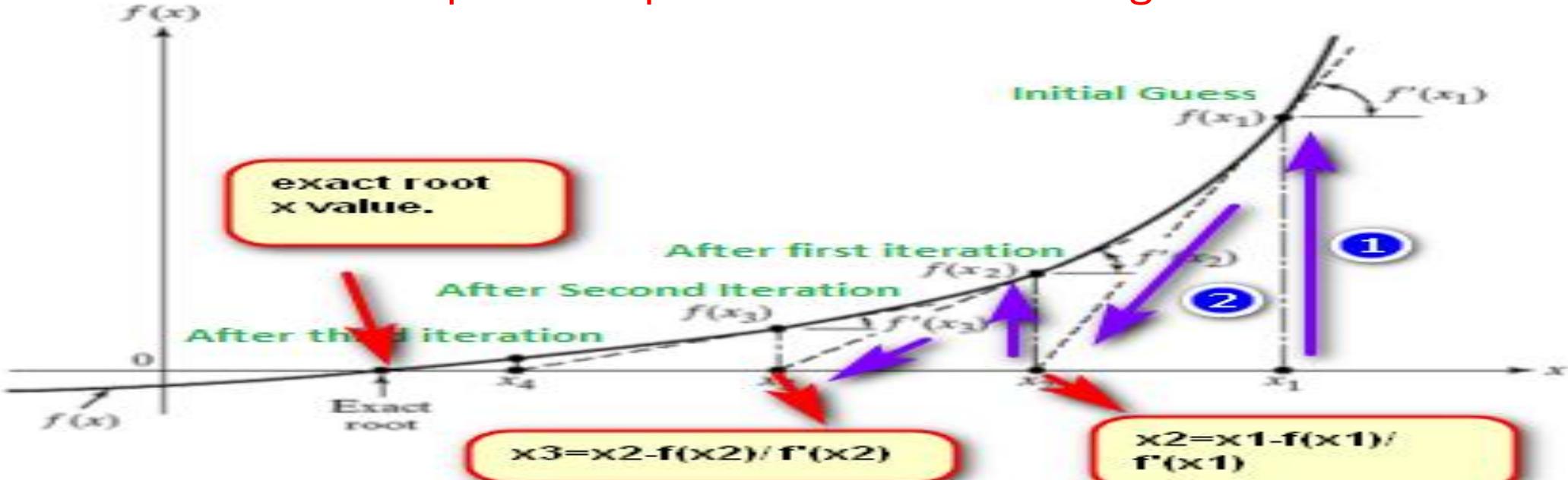
When $f(x_{\text{new}}) = 0$ at x_c

$$x_{\text{new}} = x_{\text{initial}} + 0 - \frac{1}{f'(a)} f(x_{\text{new}})$$

→ Thus creating series of
approximation will lead
to x_c

Prepared by Eng. Maged Kamel.

Newton- Raphson expression for Root finding



Getting use of the previous linear function expression

Step -1 choose x_1 and get $f(x_1)$ value and $f'(x_1)$ -Then for $y = 0$ which is y value for point x_2 on the line - $0 = f(x_1) + f'(x_1)(x_2 - x_1)$ then $x_2 = x_1 + f(x_1) / f'(x_1)$ point 2 obtained if close to real root point then $f(x_2)$ is close to zero.

Else repeat by putting x_2 value in lieu of x_1 in the previous expression and get x_3 continue the process .

Newton- Raphson expression for Root finding

$$x_1 = x_0 - \frac{f(x_0)}{f'(x_0)}$$

x_0 : initial point x value

x_1 : The first iteration x value after substitution.

$f(x_0)$: y value at $x=x_0$ & $f'(x_0)$: First derivative value at x_0

Example #4 : Use Newton method to find the roots of $\sqrt[2]{29}$

Solution : We will write the equation as

$$x = \sqrt[2]{29} \xrightarrow{\text{modify to}} x^2 = 29 \Rightarrow x^2 - 29 = 0$$

$$f(x) = x^2 - 29 \Rightarrow f'(x) = 2x$$

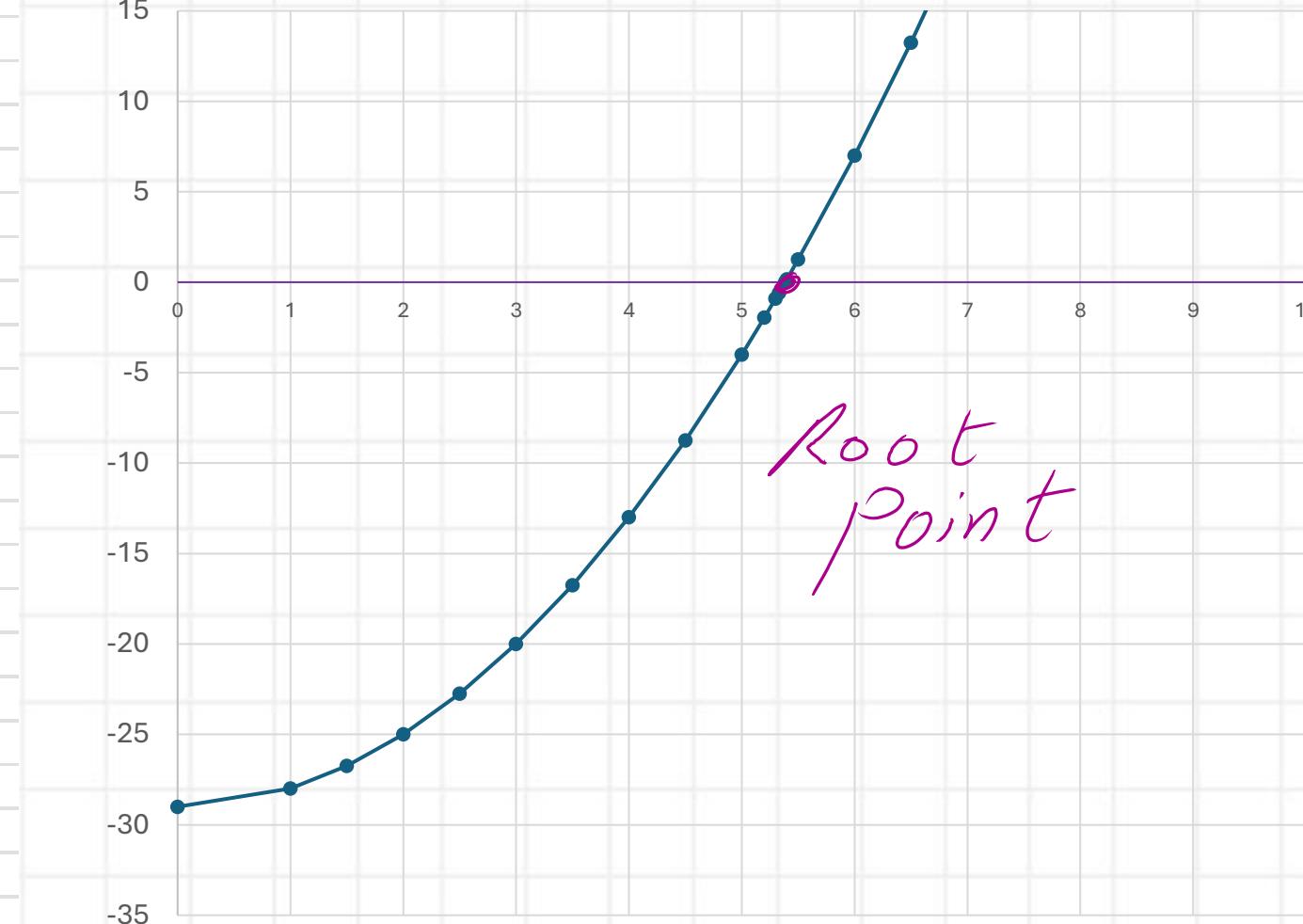
Based on analytic solution
 $6 > x > 5$

x : root Point

Prepared by Eng.Maged Kamel.

x	y
0	-29
1	-28
1.5	-26.75
2	-25
2.5	-22.75
3	-20
3.5	-16.75
4	-13
4.5	-8.75
5	-4
5.2	-1.96
5.3	-0.91
5.33	-0.591
5.3852	-5E-05
5.391	0.0629
5.4	0.16
5.5	1.25
6	7
6.5	13.25
7	20
7.5	27.25
8	35
8.5	43.25
9	52

$$y \uparrow \quad x = \sqrt[2]{29} \rightarrow f(x) = x^2 - 29$$



Example 4

Example #4 : Use Newton method to find the roots of $\sqrt[2]{29}$

$$x_i = \frac{x_0 - f(x_0)}{f'(x_0)}, \quad f(x) = x^2 - 29$$

If we select $x_0 = 5$

$$f'(x_0) = f'(5) = 5^2 - 29 = -4$$

$$x_1 = 5 - \frac{f'(x_0)}{f'(5)} = 5 - \frac{-4}{10} = 5 + 0.40 = 5.40$$

For 2nd iteration Use $x_1 = 5.40$

To find x_2

$$x_2 = x_1 - \frac{f(x_1)}{f'(x_1)}$$

$$f(5.40) = (5.4)^2 - 29 = 0.16$$

$$f'(5.40) = 2(5.40) = 10.80$$

$$x_2 = x_1 - \frac{f(x_1)}{f'(x_1)}$$

$$x_1 = 5.40$$

$$f(5.4) = 0.16$$

$$f'(5.4) = 10.80$$

$$x_2 = 5.40 - \frac{(0.16)}{(10.80)} = 5.3851$$

For $x_3 \rightarrow$ Use $x_2 = 5.3852$

$$x_3 = x_2 - f(x_2)/f'(x_2)$$

$$f(x_2 = 5.3851) = (5.3852)^2 - 29 = 3.7904(10^{-4})$$

$$f'(x_2 = 5.3851) = 2(5.3852) = 10.7704$$

$$x_3 = 5.3852 - \frac{(3.7904)(10^{-4})}{10.7704} = 5.3852$$

$$x_1 = x_0 - \frac{f(x_0)}{f'(x_0)}.$$

$$x_0=5 \quad f(x)=x^2-29$$

Newton -Raphson method $f'(x)=2x$

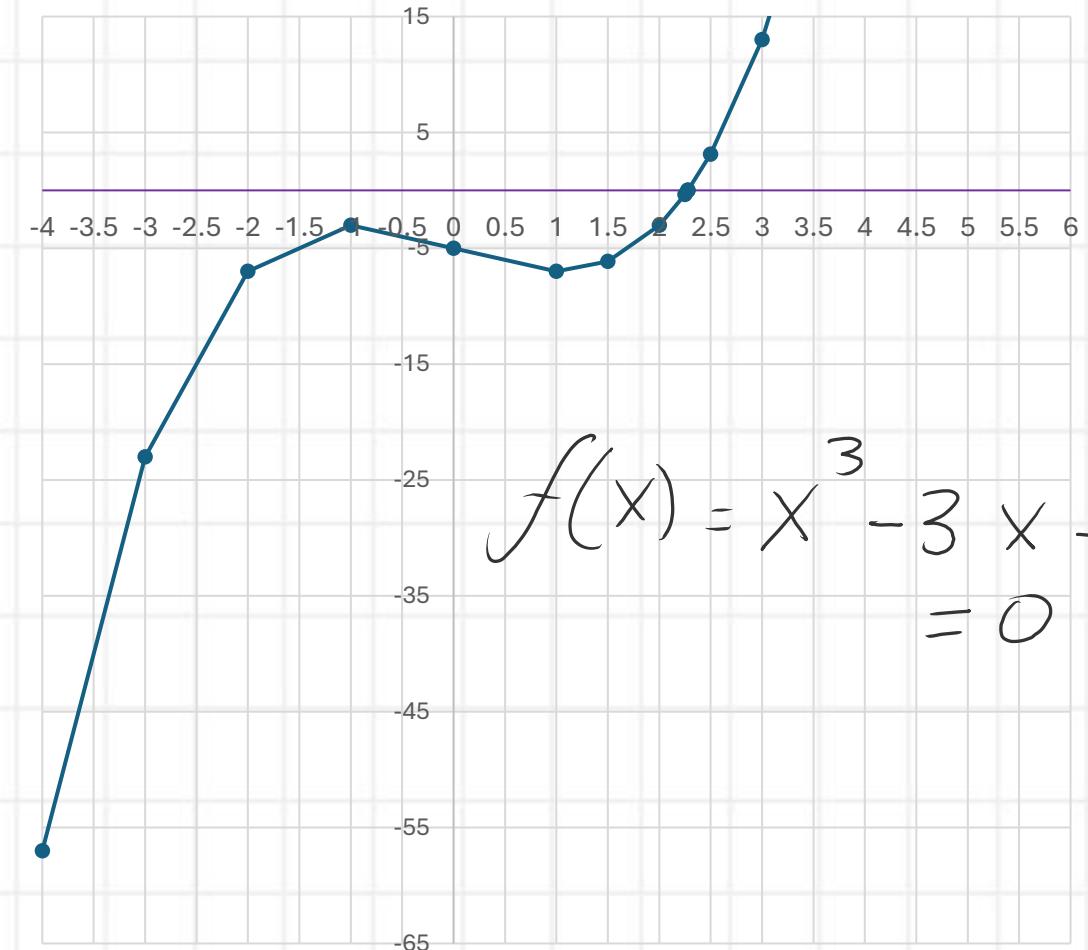
	x_i	$f(x)$	$f'(x)$	Numerator	Denominator	N/D	x_i
x_0	5	-4	10	-4	10	-0.4	5.4
x_1	5.4	0.16	10.8	0.16	10.8	0.0148	5.3852
x_2	5.3852	0.00038	10.7704	0.00038	10.77	0.00000	5.3852
x_3	5.3852	0.0004	10.7704	0.0004	10.77	0.00000	5.3852
x_4	5.3852	0.0004	10.7704	0.0004	10.77	0.00000	5.3852

Example #5: Use Newton method for root extraction to find the roots of $X^3-3x-5=0$ starting with $x_0=3.00$

Solution

By drawing using excel root between 2 & 2.50

x	y
0	-5
1	-7
1.5	-6.125
2	-3
2.5	3.125
3	13
-0.5	-3.625
-1	-3
-2	-7
-3	-23
-4	-57



Example #5: Use Newton method for root extraction to find the roots of $X^3 - 3x - 5 = 0$ starting with $x_0 = 3.00$

Solution

$$x_0 = 3.00$$

$$f(x) = x^3 - 3x - 5$$

$$f(x_0) = (3)^3 - 3(3) - 5 = 27 - 9 - 5 = 13$$

$$x_0 = 3$$

$$f'(x_0) = 3(3)^2 - 3 = 27 - 3 = 24$$

$$x_1 = x_0 - \frac{f(x_0)}{f'(x_0)} = 3 - \frac{13}{24} = 2.45833$$

Example #5: Use Newton method for root extraction to find the roots of $X^3-3x-5=0$ starting with $x_0=3.00$

		$x_0=3$	$f(x)=X^3-3x-5$				
	Newton -Raphson method			$f'(x)=3x^2-3$			
	Newton -raphson						
x_0	x_i	3	13	24	13	24	0.54166667 2.4583
x_1	2.458333333	2.4817	15.1302083	2.481698	15.13	0.16402276	2.2943
x_2	2.294310576	0.194	12.7915831	0.194	12.792	0.01516624	2.2791
x_3	2.279144331	0.00158	12.5834966	0.00158	12.583	0.00012554	2.279
x_4	2.279018795	1.1E-07	12.58178	1.08E-07	12.582	8.5641E-09	2.279

for x_2 :

$$x_1 = 2.4583 \quad f(x_1) = 2.4817$$

$$x_2 = 2.4583 - \frac{(2.4817)}{15.1302} = 2.2943$$

Example #6-Use Newton method for root extraction to find the roots of $x \cdot e^x - 2 = 0$ Solution

Here no starting point was given , it is good to make guess for the root range

By substituting:

$$\text{for } x=0 \quad f(0)=0 \cdot e^0 - 2 = -2$$

$$\text{for } x=1 \quad f(1) = 1 \cdot e^1 - 2 = 2.718281 - 2 = 0.718281.$$

Our root between 0,1

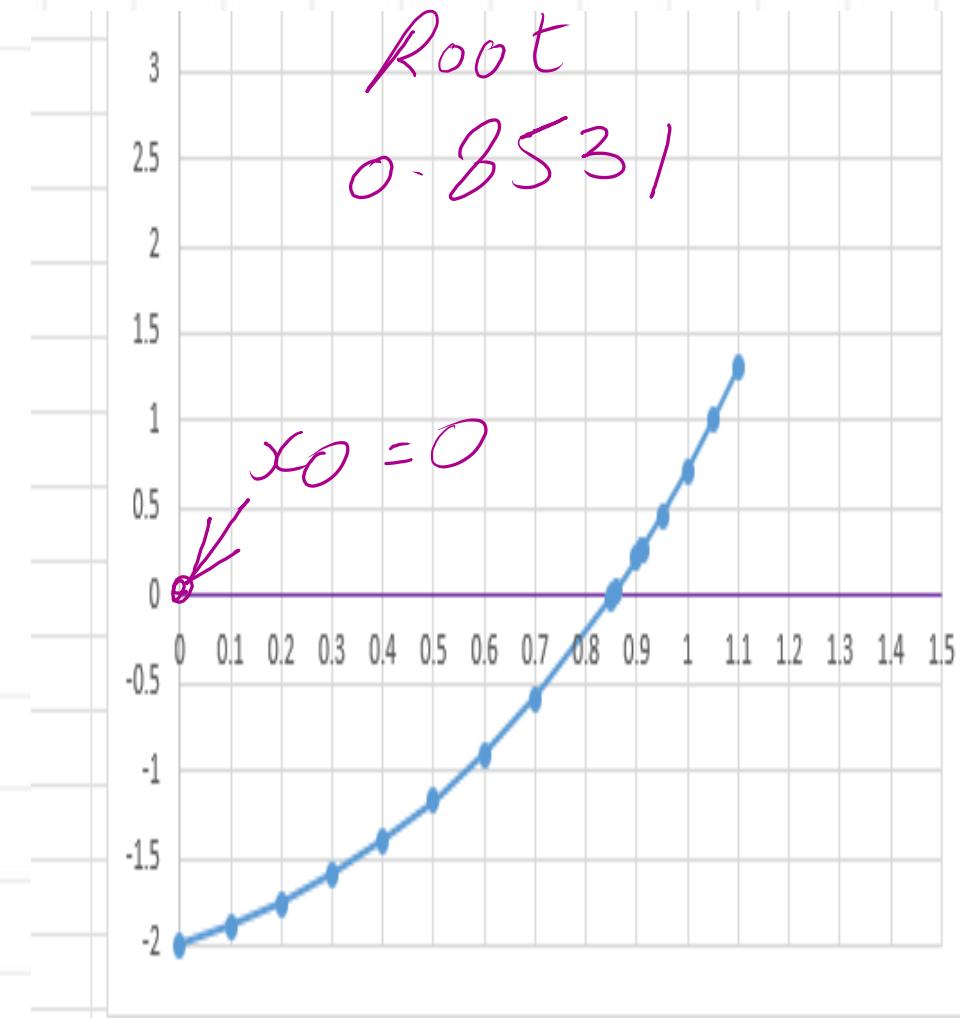
$$x_0 = 0$$

$$f(x_0) = (0)(e^0) - 2 = -2$$

$$f'(x_0) = x e^x + e^x \Rightarrow$$

$$f'(0) = 0 + 1 = 1$$

$$x_1 = 0 - \frac{(-2)}{1} = +2$$

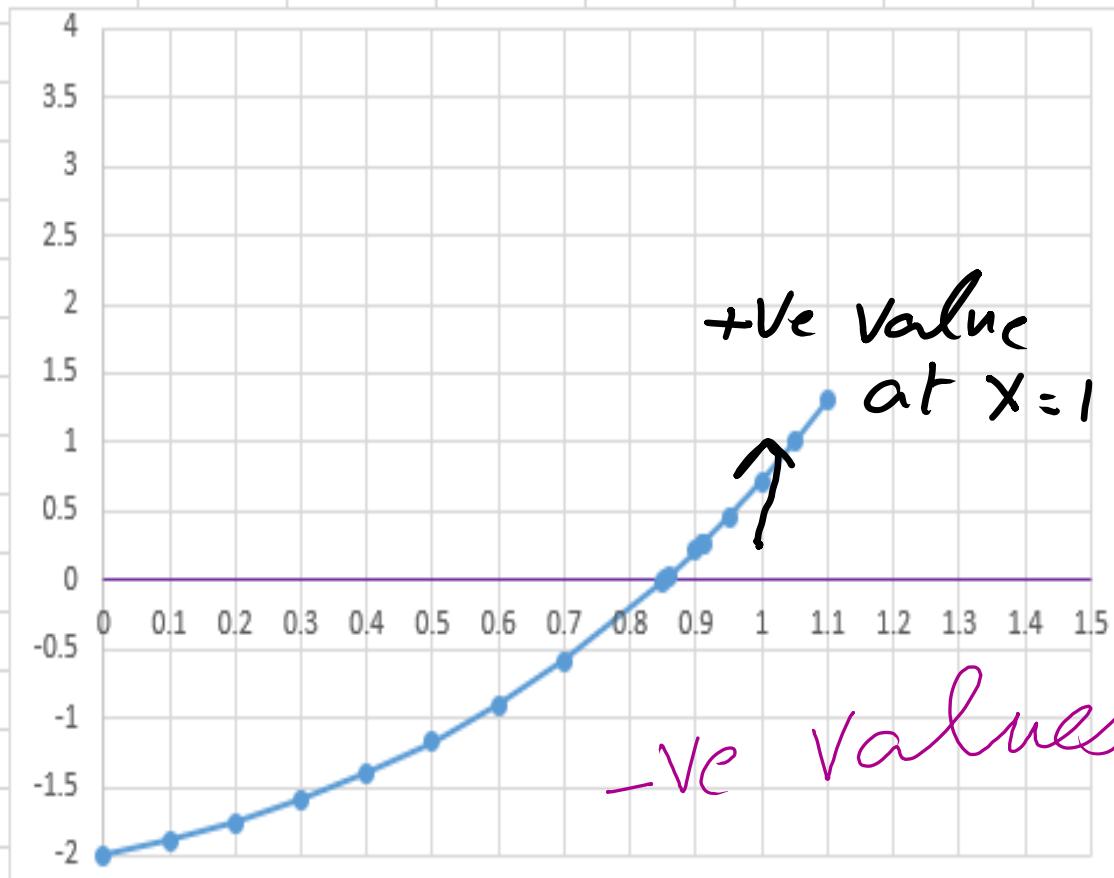


Find the function value for different x-values.

	x_i	$f(x)$
x_0	0	-2
x_1	0.25	-1.679
x_2	0.5	-1.1756
x_3	0.75	-0.4122
x_4	1	0.7183

$$F(x) = x e^x - 2$$

root=0.8531



$$x_1 = 2.00 \quad \text{to get } x_2$$

$$f(2) = e^2(2) - 2 = 12.7781$$

$$f'(2) = e^2(1+2) = 22.167$$

$$x_2 = 2.0 - \frac{12.7781}{22.167} = 1.4236$$

$$x_2 = x_1 - \frac{f(x_1)}{f'(x_1)}$$
$$f(x) = e^x \cdot x - 2$$
$$f'(x) = e^x \cdot (1+x)$$

→ Proceed with using an
Excel sheet

Use $x_0 = 0$

Using the formula for Newton -raphson

	x_i	$f(x)$	$f'(x)$	Numerator	Denominator	N/D	x_i
x_0	0	-2	1	-2	1	-2	2
x_1	2	12.7781	22.1672	12.7781	22.1672	0.576	1.4236
x_2	1.4236	3.9108	10.0629	3.9108	10.0629	0.389	1.035
x_3	1.035	0.9136	5.7287	0.9136	5.7287	0.159	0.8755
x_4	0.8755	0.1013	4.5013	0.1013	4.5013	0.023	0.853
x_5	0.853	0.0017	4.3484	0.0017	4.3484	4E-04	0.8526
x_6	0.8526	-2E-05	4.3457	-2.39E-05	4.3457	-0	0.8526

→ $x_6 = 0.8526$ ↗

Example #6-Use Newton method for root extraction to find the roots of

$$x \cdot e^x - 2 = 0 \quad \text{Solution}$$

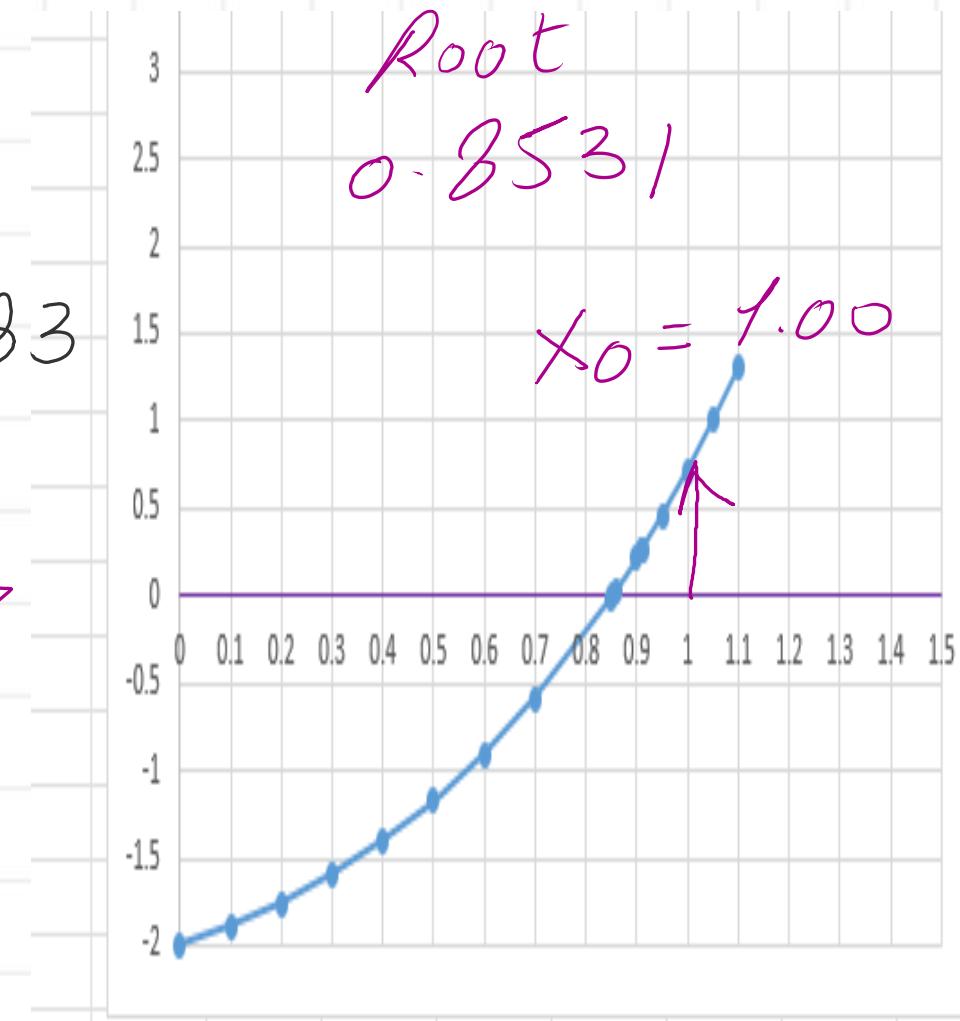
if $x_0 = 1.00$

$$f(x_0) = (1)(e^1) - 2 = 0.7183$$

$$f'(x_0) = (1)e^1 + e^1 = \\ x_0 = 1 \\ = e^1(2) = 5.437$$

$$x_1 = 1.00 - \frac{0.7183}{5.437}$$

$$x_1 = 0.8679 \\ \rightarrow \text{Proceed with Excel table}$$



$$x_0 = 1 \rightarrow x_3 = 0.8526$$

Newton -raphson				x ₀ =1			
	xi	f(x)	f'(x)	Numerator	Denominata	N/D	Xi
x0	1	0.7183	5.4366	0.7183	5.4366	0.132	0.8679
x1	0.8679	0.0673	4.4492	0.0673	4.4492	0.015	0.8528
x2	0.8528	0.0008	4.3471	0.0008	4.3471	2E-04	0.8526
x3	0.8526	-2E-05	4.3457	-2.39E-05	4.3457	-0	0.8526
x4	0.8526	-2E-05	4.3457	-2.39E-05	4.3457	-0	0.852606