

Topics Include

Set ?

Natural Numbers

Whole Number

Integers

Rational and Irrational

Real Numbers

Rounding

d.p

S.F

Whole Number

Decimal

In mathematics, an expression is **called well-defined or unambiguous** if its definition assigns it a unique interpretation or value. Otherwise, the expression is said to be not well-defined, ill-defined or ambiguous.

A Set is a collection of things (usually numbers).

1 -3 -5
5 3400
1000 15

Example: $\{5, 7, 11\}$ is a set.

Set Braces

The symbols { and } which are used to indicate sets.

For example, the items you wear: shoes, socks, hat, shirt, pants, and so on.

I'm sure you could come up with at least a hundred.

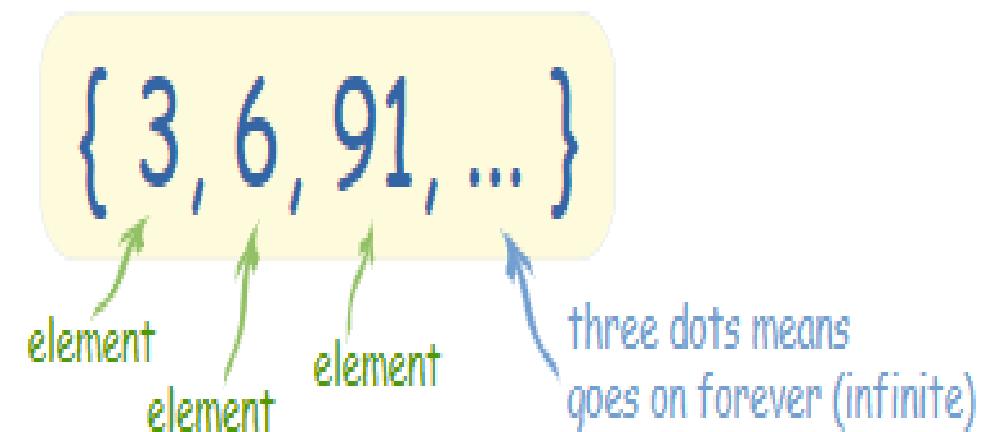
This is known as a **set**.

{ }

Curly Brackets
(also called
"Braces")

Notation

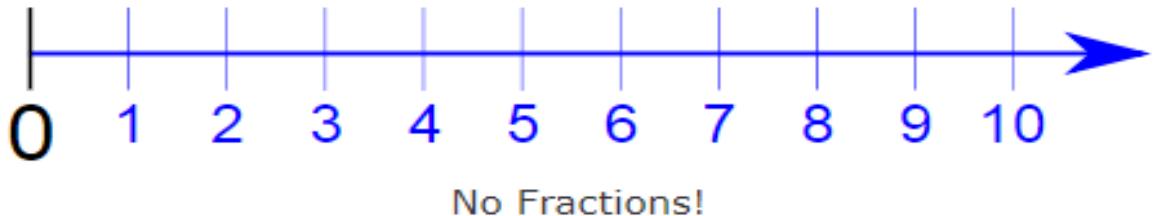
There is a fairly simple notation for sets. We simply list each element (or "member") separated by a comma, and then put some curly brackets around the whole thing:



("element" or "member" mean the same thing)

Whole Numbers

Whole Numbers are simply the numbers **0, 1, 2, 3, 4, 5, ...** (and so on)



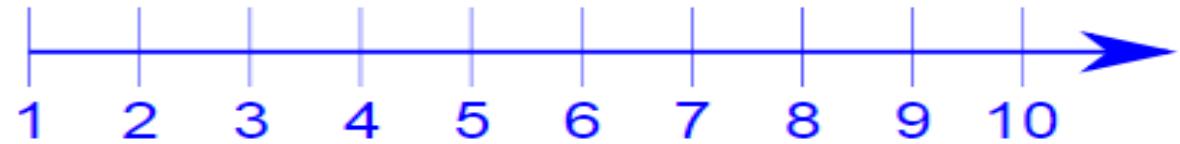
Examples: 0, 7, 212 and 1023 are all whole numbers

(But numbers like $\frac{1}{2}$, 1.1 and 3.5 are **not** whole numbers.)

Counting Numbers

= Natural Numbers > 0

Counting Numbers are Whole Numbers, but **without the zero**. Because you can't "count" [zero](#).



So they are **1, 2, 3, 4, 5, ...** (and so on)

Whole numbers don't include negative numbers, fractions, or decimals.

Prepared by Eng.Maged Kamel.

Integers are counting numbers, their opposites, and zero ... $-3, -2, -1, 0, 1, 2, 3 \dots$

Rational number

A **rational number** is a number that can be written in the form p/q , where p and q are integers and $q \neq 0$.

Its decimal form stops or repeats.

All fractions, both positive and negative, are rational numbers. A few examples are

45, -78, 134, and -203

Real number

A **real number** is a number that is either rational or irrational.

Rational numbers : numbers with ratios

Rational Numbers		
	Fractions	Integers
Number	$\frac{4}{5}, -\frac{7}{8}, \frac{13}{4}, -\frac{20}{3}$	$-2, -1, 0, 1, 2, 3$
Ratio of Integer	$\frac{4}{5}, \frac{-7}{8}, \frac{13}{4}, \frac{-20}{3}$	$\frac{-2}{1}, \frac{-1}{1}, \frac{0}{1}, \frac{1}{1}, \frac{2}{1}, \frac{3}{1}$
Decimal number	$0.8, -0.875, 3.25, -6.\overline{6}$	$-2.0, -1.0, 0.0, 1.0, 2.0, 3.0$

• **Definition:** A real number that cannot be expressed as a simple fraction (a ratio of two integers).

Irrational

Irrational Numbers

Are there any decimals that do not stop or repeat? Yes. The number π (the Greek letter pi, pronounced 'pie'), which is very important in describing circles, has a decimal form that does not stop or repeat.

$$\pi = 3.141592654\dots$$

Similarly, the decimal representations of square roots of whole numbers that are not perfect squares never stop and never repeat. For example,

$$\sqrt{5} = 2.236067978\dots$$

A decimal that does not stop and does not repeat cannot be written as the ratio of integers. We call this kind of number an **irrational number**.

$$\mathbb{Z}^+ = \{x \mid x \text{ is Positive Integer}\}$$
$$\{1, 2, 3, 4, \dots\}$$
$$\mathbb{Z}: \text{Integers}$$
$$\{-\dots, -4, -3, -2, -1, 0, 1, 2, 3, 4, \dots\}$$
$$\mathbb{Z} = \{x \mid x \text{ is an Integer}\}$$
$$\mathbb{Q} = \{x \mid x \text{ is rational Number}\}$$
$$\mathbb{R} = \{x \mid x \text{ is Real Number}\}$$
$$\emptyset = \{\}$$

$\{ x \mid x \text{ such that } x \in \mathbb{N}, x < 10 \}$

"The set of all x , such that, x is
an element of the Natural Number
and x is less than 10"

$\{ 1, 2, 3, 4, 5, 6, 7, 8, 9 \}$

SET Builder

<https://www.mathsisfun.com/sets/set-builder-notation.html>

Here is a simple example of set-builder notation:

$$\{ x \mid x > 0 \}$$

the set of all x such that x is greater than zero

It says "***the set of all x's, such that x is greater than 0***".

In other words **any value greater than 0**

Notes:

- The "x" is just a place-holder, it could be anything, such as $\{ q \mid q > 0 \}$
- Some people use ":" instead of "|", so they write $\{ x : x > 0 \}$

- ✓ **Counting numbers (also called natural numbers):** The set of numbers beginning 1, 2, 3, 4 ... and going on infinitely
- ✓ **Integers:** The set of counting numbers, zero, and negative counting numbers
- ✓ **Rational numbers:** The set of integers and fractions
- ✓ **Real numbers:** The set of rational and irrational numbers
 - \mathbb{R} = real numbers, \mathbb{Z} = integers, \mathbb{N} =natural numbers, \mathbb{Q} = rational numbers, \mathbb{P} = irrational numbers.
 - \subset = proper subset (not the whole thing) \subseteq =subset
 - \exists = there exists
 - \forall = for every
 - \in = element of
 - \cup = union (or)
 - \cap = intersection (and)