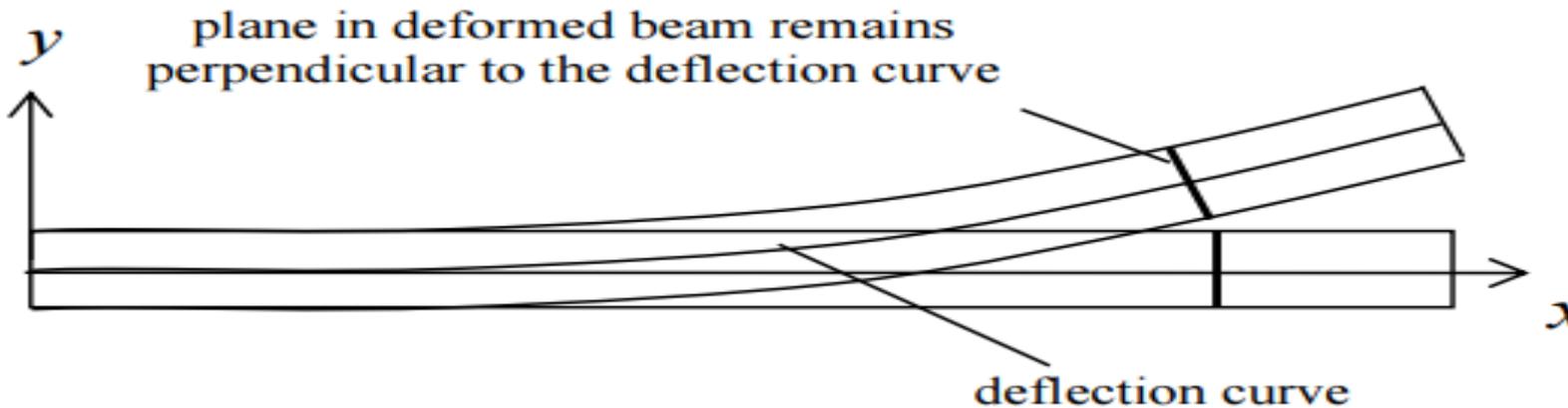


Objective of the lecture

- 1-Theory of pure bending, assumptions, and relations.
- 2-Why do we estimate the Product of Inertia?
- 3-Mohr circle of inertia.

Assumptions

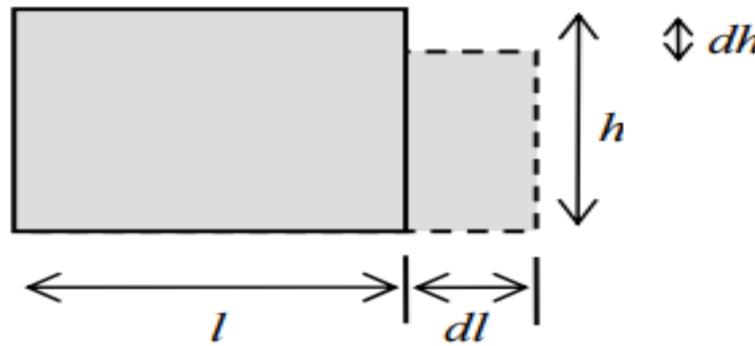
1-Plain section perpendicular to the neutral axis before deformation, remains perpendicular to the neutral axis after deformation.



2-Deformation due to bending is small

3-The beam is initially straight and all longitudinal filaments bend into circular arcs with a common center of curvature.

4- Deformation in the vertical direction, i.e. the transverse strain ε_{yy} , may be neglected in deriving an expression for the longitudinal strain ε_{xx} . This assumption is summarised in the deformation shown in Fig. 7.4.20, which shows an element of length l and height h undergoing transverse and longitudinal strain.



$$\varepsilon_{xx} = \frac{dl}{l}, \quad \varepsilon_{yy} = -\frac{dh}{h} \approx 0$$

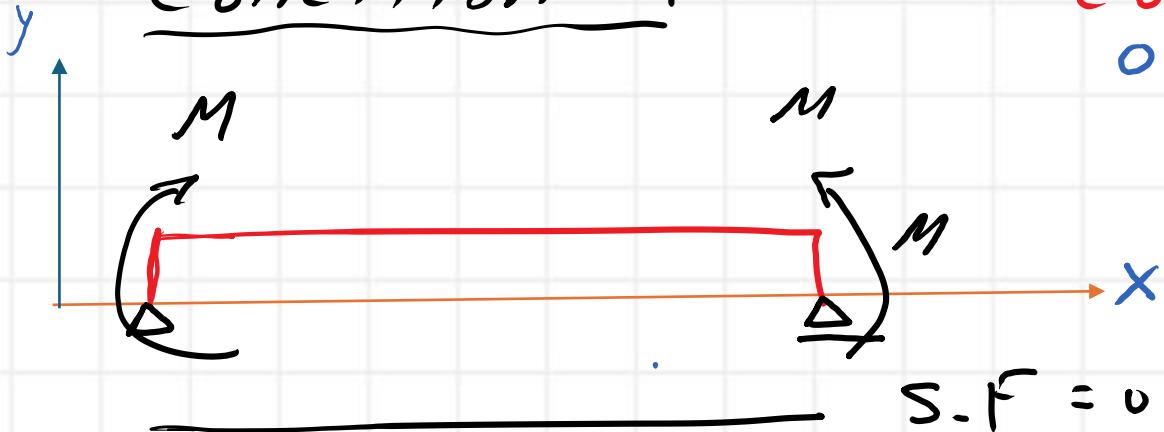
Figure 7.4.20: transverse strain is neglected in the elementary beam theory

5-The radius of curvature is large as compared to the dimensions of the cross-section.

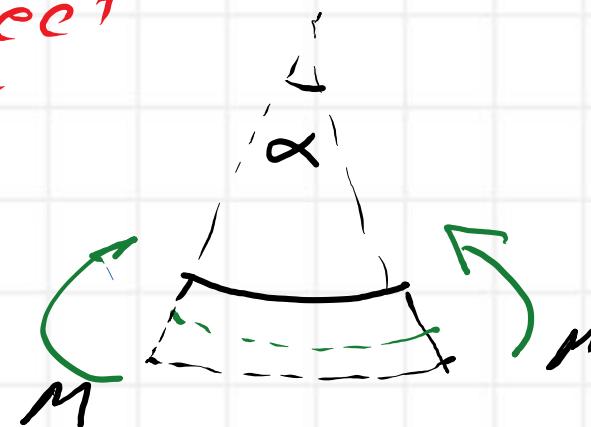
6-The value of Young's Modulus of Elasticity is same in tension and compression.

What is pure bending?

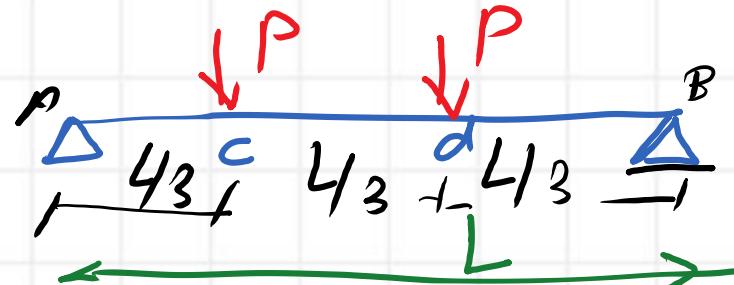
Condition - 1



Beam subject to moment on both sides



Condition - 2

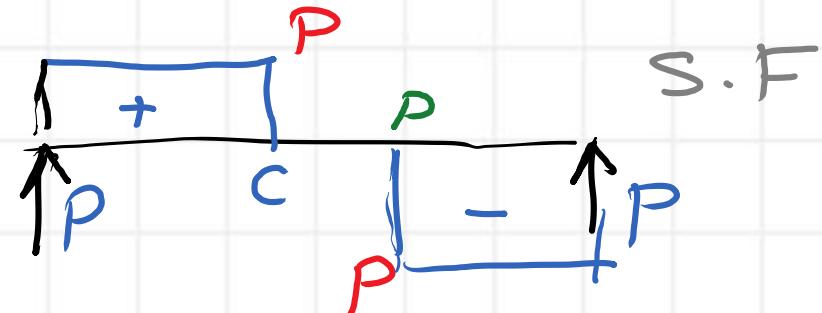
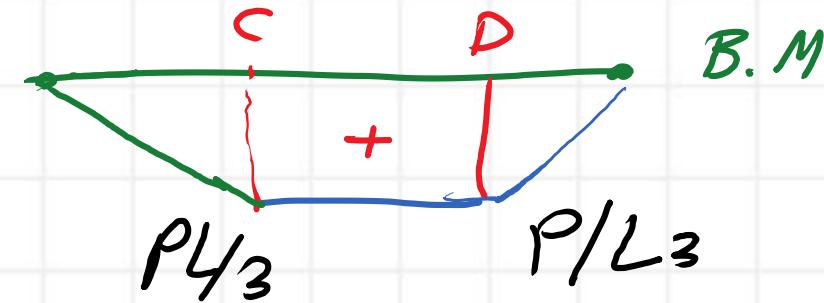


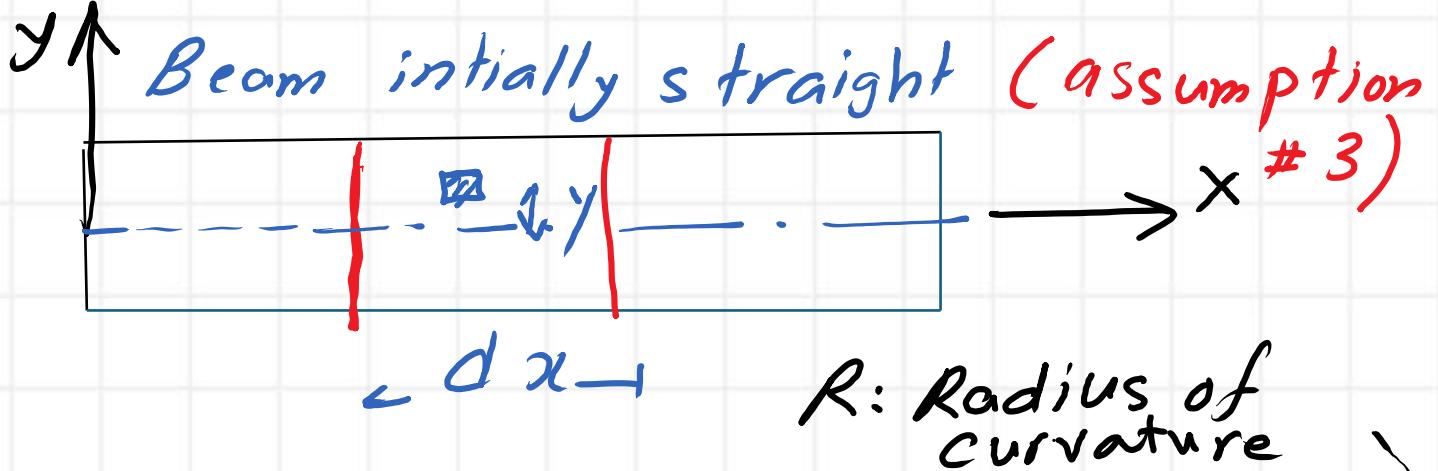
For Part C-D

$$S.F. = 0$$

$$M = P/3$$

Pure moment





$$dx = R d\alpha \quad \text{original length}$$

$$\text{Length at } y = (R-y) d\alpha$$

$$\text{Original Length} = dx = R d\alpha \rightarrow y \text{ above } x$$

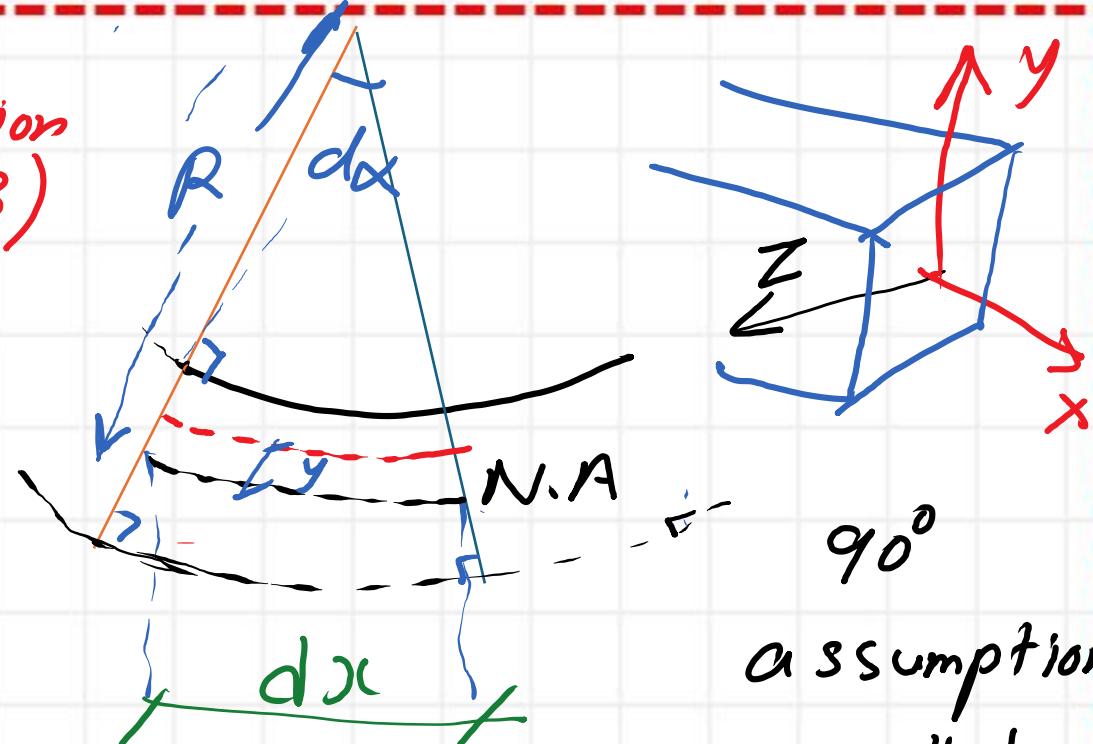
$$\text{Deformation} = (R-y) d\alpha - R d\alpha = d\alpha (R-y - R)$$

$$\text{Deformation} = -y d\alpha$$

$$= -y d\alpha / R d\alpha = -y/R$$

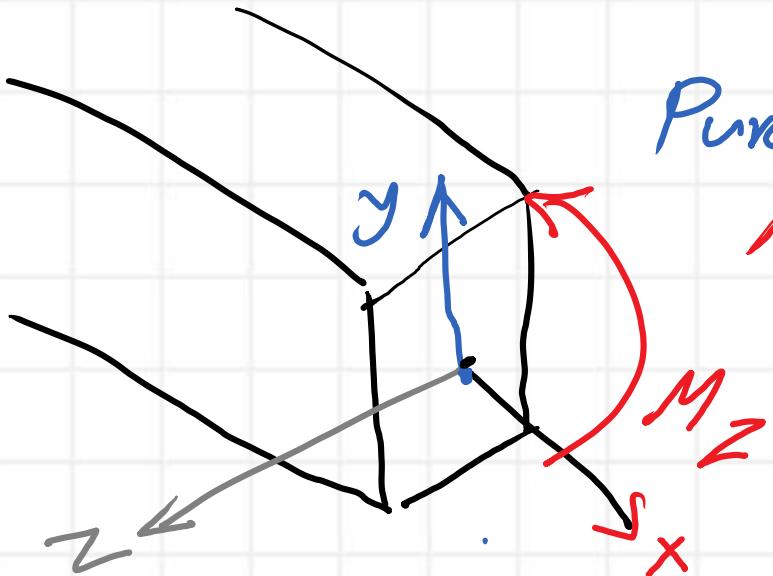
$$\text{since } E = \frac{f}{\epsilon}$$

Prepared by Eng. Maged Kamel.



$$f = -\frac{y}{R} \cdot E$$

assumptions
4 & 6



Pure bending
Rotate around Z

$$\sum F = 0$$

$$\int dA \cdot f = 0$$

$$\int dA \cdot \left(-\frac{y}{R} E\right) = 0$$

Since $-\frac{E}{R} \neq 0$ $\int dA \cdot y = 0$ First moment of Area = 0
N.A Passes by C.G

