To understand the following points
1- Definitions.

2- Matrices properties.

3- Gaussian elimination.

4-Crammer’s rule.



Whatis Matrix ? Matrix is a rectangular array of numbers and
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System of linear
equations

From féf /Vf’L ZZV‘M/U"’ Matrix (2x2) means two

/ = X =+ 2 rows and two columns
Subei tunhe the Vo |ue Y, the s eCond

Ae heNe Y4 g (3+3) - Eg o
Back [o X+ 2% +6 =3 J
Vex<+3 3;‘3“7/-:‘3



I What is Matrix ?

I

| Matrix is a rectangular array of numbers and B
\ bounded by the brackets @
I

uppose we have X- y=-3&X+2y=+3

System of linear +
equations *
q e
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Matrix is a rectangular array of humbers and bounded by the
brackets
Matrix can be formed as follows
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Diagonal matrix 3=
Matrix with all non diagonal are zeros. !
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Symmetric matrix E
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Triangular matrix (Echelon form)
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Transpose of matrix
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Orthogonal matrix Mﬁﬁ’/Y A /5 Oi”[/toﬁf?”e'/(

If the product of matrix and its transpose is an identity matrix
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Equality of matrices Y, a-«é /
quality 5§1C ore %u fo/im/@SMM

b - 3}(3)19/_,4 b/z
0)}%6// ﬂ}éﬁ are 7ol 5; ""Z

1

f

l

er 8

3 x -4\ P QX?>> (2 Xx3)

Sy g 1T 1ET T

Cve Moth 6@”3 o \x 7her E
Example 1: Check if the matr cesl4 _53 ___i"l'z]and A - g i
I: 2 ? ]a e equal using equality of matrices definition. x - |~ Z E
1 —3 —12 5 - LI 4 i
i

!

f

i

i

B

f



N Q
U’
2 Sl
S x Ol
|
N D ——
+
- \
/l‘\
S __ T
= - N\ Oy o+
& T x ) T
b — N
Q0 _
3
n o™
o om .
m — ~ N ZI_I
2 ™ X |
S T
I N
.m — N ~
nMa /\ |V
I
- < 8,
= \
XC



2-Scalar multiplication
C=-

Matrix operations
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