

Mechanics of Materials_An Integrated Learning System

$$\sum x = 0 \quad \& \quad \sum y = 0$$

Prof. Timothy Philpot
Chapter 7-4

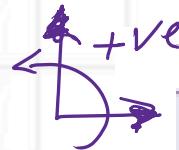
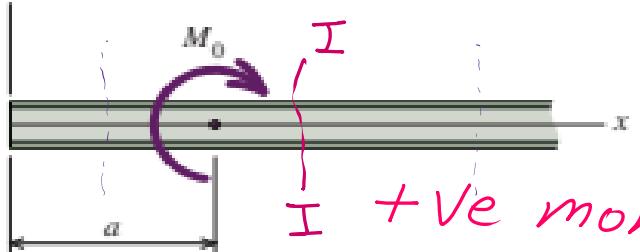
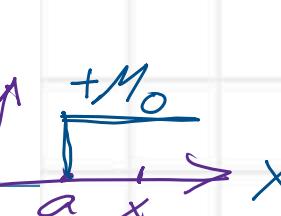
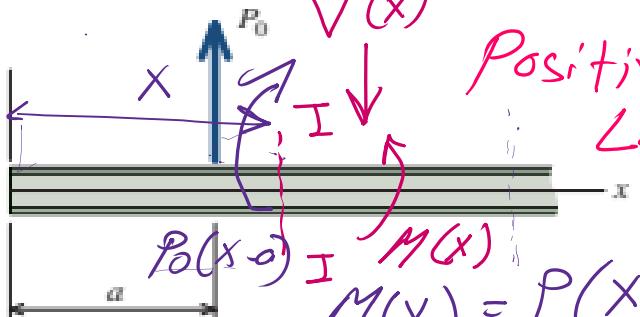
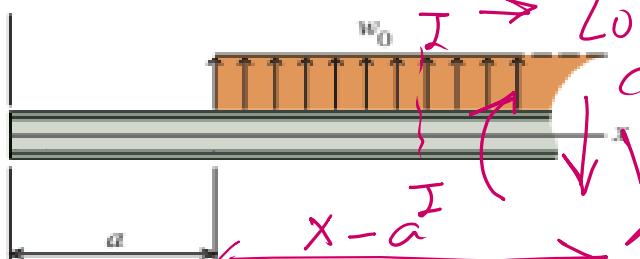
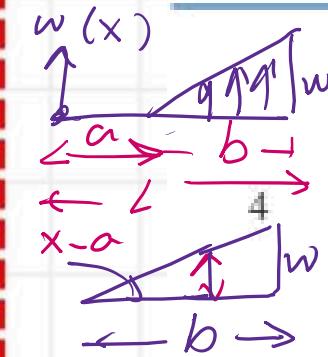
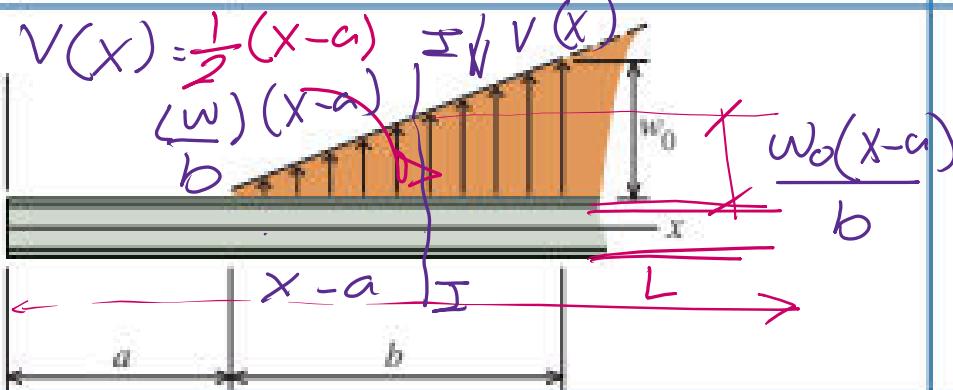


Table 7.2 Basic Loads Represented by Discontinuity Functions

Case	Load on Beam	Discontinuity Expressions
$\sum M = 0$ $M(x) = M_0$ $M(x) - M_0 = 0$	 <p>$M(x) = M_0$ for $x > a$</p> <p>$M(x) = 0$ for $x \leq a$</p> <p>$+ve$ moment</p>	$w(x) = M_0(x-a)^{\frac{1}{2}}$ $V(x) = M_0(x-a)^{\frac{1}{2}} + C_1$ $M(x) = M_0(x-a)^0 \Rightarrow$ Step function <p>Macaulay's Function</p> 
$V(x) = P_0$ $P(x-a) = P_0(x-a)$	 <p>$P(x-a) = P_0(x-a)$</p> <p>$M(x) = P(x-a)$</p> <p>Positive Load</p>	$w(x) = P_0(x-a)^{-1}$ $V(x) = P_0(x-a)^0$ $M(x) = P_0(x-a)^1$
$w(x) = w_0$ $w_0(x-a) = w_0(x-a)$	 <p>$w_0(x-a) = w_0(x-a)$</p> <p>$M(x) = \frac{w_0}{2}(x-a)^2$</p> <p>continuous load</p>	$w(x) = w_0(x-a)^0$ $V(x) = w_0(x-a)^1$ $M(x) = \frac{w_0}{2}(x-a)^2$ <p>} Macaulay's function</p> <p>$w_0(x-a)(x-a) = M$</p>

Load Continues

Mechanics of Materials_ An Integrated Learning System

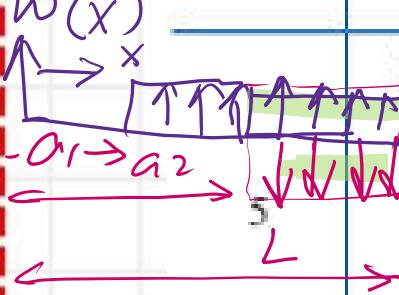
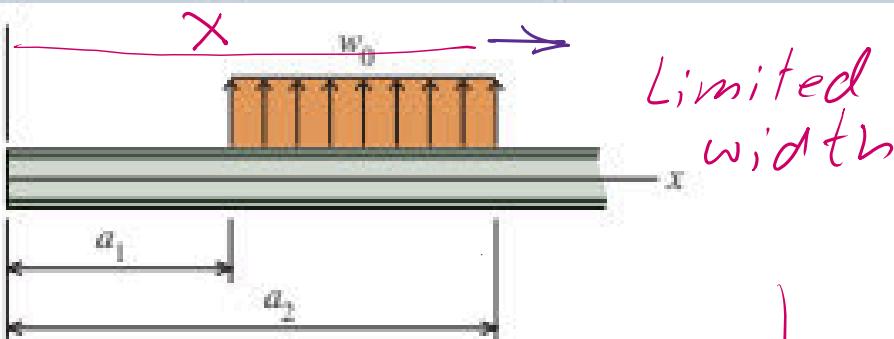


$$w(x) = \frac{w_0}{b}(x-a)^1$$

$$V(x) = \frac{w_0}{2b}(x-a)^2$$

$$M(x) = \frac{w_0}{6b}(x-a)^3$$

Macaulay's

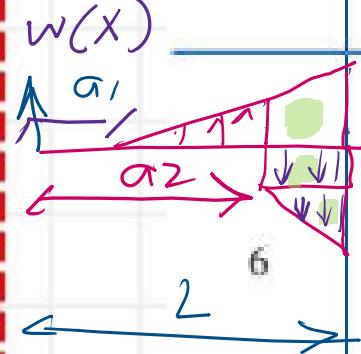
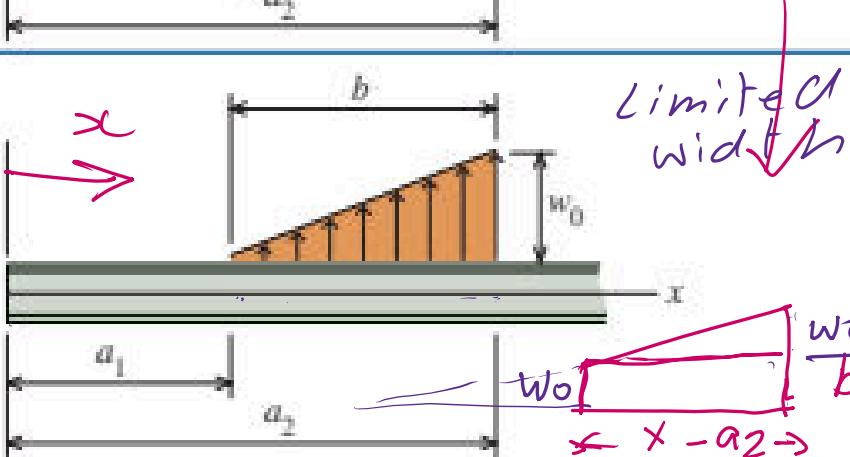


$$w(x) = w_0(x-a_1)^0 - w_0(x-a_2)^0$$

$$V(x) = w_0(x-a_1)^1 - w_0(x-a_2)^1$$

$$M(x) = \frac{w_0}{2}(x-a_1)^2 - \frac{w_0}{2}(x-a_2)^2$$

Macaulay's

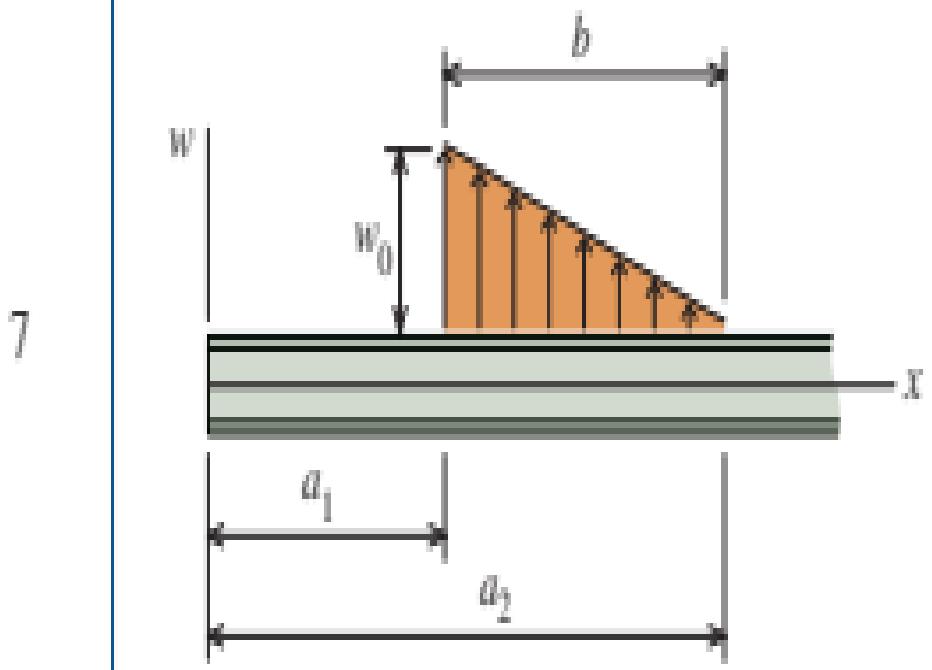


$$w(x) = \frac{w_0}{b}(x-a_1)^1 - \frac{w_0}{b}(x-a_2)^1 + w_0(x-a_2)^0$$

$$V(x) = \frac{w_0}{2b}(x-a_1)^2 - \frac{w_0}{2b}(x-a_2)^2 - w_0(x-a_2)^1$$

$$M(x) = \frac{w_0}{6b}(x-a_1)^3 - \frac{w_0}{6b}(x-a_2)^3 - \frac{w_0}{2}(x-a_2)^2$$

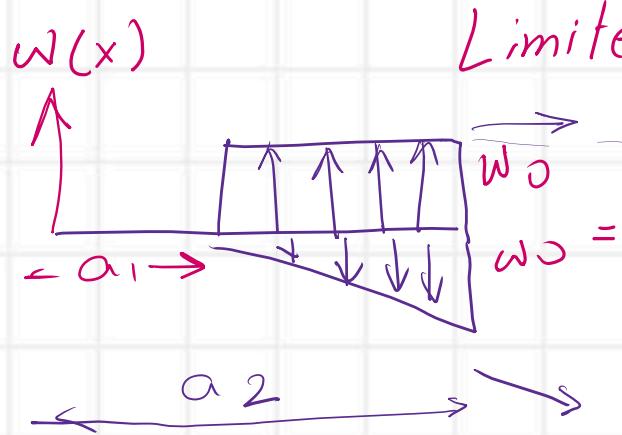
Deduct deduct



$$w(x) = w_0(x - a_1)^0 - \frac{w_0}{b}(x - a_1)^1 + \frac{w_0}{b}(x - a_2)^1$$

$$V(x) = w_0(x - a_1)^4 - \frac{w_0}{2b}(x - a_1)^2 + \frac{w_0}{2b}(x - a_2)^2$$

$$M(x) = \frac{w_0}{2} (x - a_1)^2 - \frac{w_0}{6b} (x - a_1)^3 + \frac{w_0}{6b} (x - a_2)^3$$



Limited width

