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| Unit Step Function Inengineering, one frequently encounters functions that are either

“off™ or “on.” For example, an external force acting on a mechanical system or a voltage impressed X

on a circuit can be turned off after a period of time. It is convenient, then, to define a special func- + mao T/ 4/\ %
tion that is the number 0 (off) up to a certain time f = a and then the number 1 (on) after that time. = \— b —>
Thus function is called the unit step function or the Heaviside function named after the renowned @ \

English elecirical engineer, physicist, and mathematician Oliver Heaviside (1850-1925). The
Heaviside layer in the ionosphere which can reflect radio waves is named in his honor.
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Macaulay Functions

Distributed loadings can be represented by Macaulay functions, which are defined 1n
general terms as follows:

forn=z0(n=0, 1, 2,...) (7.7)

() whenxy < a
{x —a)' =

(x —a)' whenx =a

Whenever the term inside the brackets is less than zero, the Macaulay funchion equals zero
and it i1s as if the function does not exist. However, when the term inside the brackets i1s
greater than or egual to zero, the Macaulay function behaves like an ordinary function,
which would be wntten with parentheses. In other words, the Macaulay function acts like
a switch in which the function turns on for values of x greater than or equal to a.

Three Macaulay functions corresponding, respectively. ton=0.n= 1. and n = 2 are
plotted in Figure 7.13. In Figure 7.13a, the function {x — a)” is discontinuous at x = a,
producing a plot in the shape of a step. Accordingly, this function 1s termed a step function.
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FIGURE 7.12 Graphs of Macaulay functions.

From the defimition given in Egquation (7.7). and with the recogmtion that any number
raised to the zero power 1s defined as unity, the step function can be summanzed as

. {{] whenxy < a P
(e —a)i= 1 whenx = a _

When scaled by a constant value equal to the load intensity, the step function {x — a)" can
be used to represent uniformly distributed loadings. Inm Figure 7.130, the function
{x — a)! 1s termed a ramp function because it produces a linearly increasing plot beginning
at x = a. Accordingly, the ramp function {x — a}', combined with the appropriate load inten-
sity, can be used to represent linearly distributed loadings. The function {xr — a) in Figure
T.13¢ produces a parabolic plot beginning at x = a.

Observe that the quantity inside of the Macaulay brackets 15 a measure of length:
therefore,. 1t will include a length dimension. such as meters or feet. The Macaulay func-
tions will be scaled by a constant to account for the intensity of the loading and to ensure
that all terms included in the load function wix) have consistent units of force per umit
length. Table 7.2 gives discontinuity expressions for varnious types of loads.
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Singularity Functions Nkem /7 <O

Singularity functions are used to represent concentrated forces Py and concentrated
moments My. A concentrated force Fy can be considered a special case of a distnibuted
load im which an extremely large load Py acts over a distance £ that approaches zero
(Figure 7.14a). Thus, the intensity of the loading is w = Py /&, and the area under the
loading 15 equivalent to P. This can be expressed by the singularity function

! {ﬂ' when ¥ F a

-1
: = P e =
| wix) h{x —a) P, ol (7.9)

in which the function has a value of P, only at x = a and i1s otherwise zero. Observe that
n = —1. Since the bracketed term has a length umt, the result of the function has units of
force per unit length, as required for dimensional consistency.

Similarly, a concentrated moment M, can be considered as a special case involving
two distributed loadings. as shown in Figure 7.146. For this type of load, the following
singularity function can be employed:

(x) = My Y2 [ﬂ e e 7.10
MLE)] — I e - L
0 Hu when y = a ( )

As before, the function has a value of M only at x = a and is otherwise zero. In Equation
(7.10), notice that n = — 2, which ensures that the result of the function has consistent units
of force per unit length.
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{a) Concentrated force as a special case of a distributed load
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FIGURE 7.14 Singularity - - |
functions to represent (a)
concentrated forces and (&)
concentrated moments. (b)) Concentrated moment as a special case of a distributed load



Integration of Discontinuity Functions

These functions can be integrated almost hike ordinary functions:

Macaulay functions (n =0):
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Singulanty functions (n<0):

cdd | ton
[F0-RD e el -feal”

L1
No d/vison



	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7

